The present disclosure relates to an electric connector.
A waterproof electric connector is known as a type of electric connector. For example, in the configuration that is disclosed in Patent Literature 1 below, each contact of a connector has a fixed portion embedded in a housing made of an insulating resin and a groove is formed as a waterproof shape portion in the surface of the fixed portion. In the connector of Patent Literature 1, water intrusion along the interface between the fixed portion and the housing is blocked by such a waterproof shape portion and the connector is internally waterproofed as a result (hereinafter, also referred to as “internal waterproofing”).
In addition, Patent Literature 2 below discloses a configuration in which an elastic material constitutes a waterproof member, the waterproof member is disposed in the outer peripheral portion of a connector, and an accommodating space provided in a housing of a portable device, an information device, or the like accommodates the connector such that the outer peripheral part of the waterproof member and the inner wall of the accommodating space of the housing are in close contact with each other. In the connector of Patent Literature 2, waterproofing between the connector and the housing outside the connector (hereinafter, also referred to as “external waterproofing”) is achieved by means of such a configuration.
Patent Literature 1: Japanese Unexamined Patent Publication No. 2014-130691
Patent Literature 2: Japanese Unexamined Patent Publication No. 2017-21899
In the above-described electric connector according to the related art, the internal waterproofing and the external waterproofing are achieved by separate members (that is, the contact and the waterproof member). Accordingly, the configuration of the connector may become complicated, assembly may become complicated, and an increase in cost may ensue in a case where a member for the internal waterproofing and a member for the external waterproofing are combined so that both the internal waterproofing and the external waterproofing are realized.
An object of the present disclosure is to provide an electric connector with a simpler waterproof configuration.
An electric connector according to an aspect of the present disclosure includes a connecting portion configured to be connected with an opposite connector, a main body portion positioned behind the connecting portion in a direction of connection with the opposite connector, a conductive contact extending along the direction of connection with the opposite connector with at least a part held by the connecting portion and the other part held by the main body portion. An opening is formed in the main body portion that exposes the conductive contact. The electric connector further includes a waterproof member having an internal waterproof portion that fills the opening of the main body portion and covers an exposed portion of the conductive contact exposed from the opening and waterproofing an interior of the electric connector and an external waterproof portion having an annular shape and surrounding an entire circumference of the main body portion perpendicularly to the direction of connection with the opposite connector, wherein an entire circumference of the external waterproof portion configured to abut against an inner wall of an accommodating space of the electric connector, and waterproofing an exterior of the electric connector, the internal waterproof portion and the external waterproof portion being integrated.
In the electric connector described above, the internal waterproof portion of the waterproof member prevents water intrusion along the conductive contact by covering the exposed portion of the conductive contact in the opening. In addition, the external waterproof portion of the waterproof member prevents water intrusion between the connector and the inner wall of the accommodating space by surrounding the entire circumference of the main body portion. Since the internal waterproof portion and the external waterproof portion are integrated as described above, both internal waterproofing and external waterproofing can be realized with the simple configuration of the single waterproof member in the electrical connector described above.
The electric connector according to another aspect of the present disclosure further includes a conductive member having a plate shape that extends along the direction of connection with the opposite connector and having a part held by the connecting portion. A plurality of conductive contacts are disposed on both front and back sides of the conductive member in a state of being electrically insulated from the conductive member, at least a part of each of the conductive contacts being held by the connecting portion and the other part of each of the conductive contacts being held by the main body portion.
In the electric connector according to another aspect of the present disclosure, wherein the other part of the conductive member is held by the main body portion, wherein the conductive member is exposed from the opening of the main body portion, and wherein the internal waterproof portion of the waterproof member covers an exposed portion of the conductive member exposed from the opening.
The electric connector according to another aspect of the present disclosure further includes a conductive shell having a tubular shape that surrounds the connecting portion and that extends in the direction of connection with the opposite connector.
In the electric connector according to another aspect of the present disclosure, a rear end of the conductive shell is fitted to a front end of the main body portion, and wherein an outer shape dimension of the fitting part in the main body portion increases rearward in the direction of connection with the opposite connector.
In the electric connector according to another aspect of the present disclosure, the external waterproof portion of the waterproof member covers the fitting part between the conductive shell and the main body portion.
According to the present disclosure, an electric connector with a simpler waterproof configuration is provided.
Hereinafter, an embodiment of the present disclosure will be described in detail with reference to accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same functions so that the same description does not have to be repeated.
First, an electrical connector 1 according to the present embodiment will be described with reference to
The electrical connector 1 is a receptacle connector attached to an electronic device 2 such as a portable device and an information technology device. As illustrated in
The electrical connector 1 and the plug connector are interconnected along a predetermined direction. As illustrated in
As illustrated in
Hereinafter, the configuration of the connector assembly 30 will be described with reference to
As illustrated in
Each of the plurality of contacts 40 is an elongated member extending along the direction in which the electrical connector 1 and the plug connector are interconnected (X direction). A metal material such as Cu constitutes each of the plurality of contacts 40. As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
A spring portion 59 connected to extending portions 14A and 14B of the shell 10 to be described later is provided in both Y-direction end portions of the plate-shaped portion 58a of the back ground plate 58.
An insulating resin constitutes the resin molded body 60. As illustrated in
The resin molded body 60 has a connecting portion 70 and a main body portion 80. The connecting portion 70 is a part to be connected with the opposite connector and is positioned in the front of the resin molded body 60 with regard to the direction of connection. The main body portion 80 is a part to be fixed to the substrate 3 of the electronic device 2 and is positioned behind the connecting portion 70 in the direction of connection with the opposite connector.
The connecting portion 70 holds the front portion (a part) of each contact 40 with regard to the direction of connection. Specifically, the connecting portion 70 holds the upper contact 42 on one surface (surface) of the plate-shaped portion 52a of the intermediate ground plate 52 such that the upper contact 42 is separated by a predetermined distance from the plate-shaped portion 52a of the intermediate ground plate 52. In addition, the connecting portion 70 holds the lower contact 44 on the other surface (back surface) of the plate-shaped portion 52a of the intermediate ground plate 52 such that the lower contact 44 is separated by a predetermined distance from the plate-shaped portion 52a of the intermediate ground plate 52.
The connecting portion 70 holds the plate-shaped portion 54a of the upper ground plate 54 in a state where the upper contact 42 is interposed on one surface of the plate-shaped portion 52a of the intermediate ground plate 52. Likewise, the connecting portion 70 holds the plate-shaped portion 56a of the lower ground plate 56 in a state where the lower contact 44 is interposed on the other surface of the plate-shaped portion 52a of the intermediate ground plate 52. In other words, the plurality of contacts 40 (upper contact 42 and lower contact 44) are disposed on both sides of the intermediate ground plate 52 (conductive member having a plate shape) in a state of being electrically insulated from the intermediate ground plate 52 and with at least one part held by the connecting portion 70 and the other part held by the main body portion 80.
The main body portion 80 holds the rear portion (the other part) of each contact 40 and each ground plate 50 with regard to the X direction. As illustrated in
As illustrated in
Next, a procedure for manufacturing the connector assembly 30 will be described with reference to
Initially during the manufacturing of the connector assembly 30, the intermediate ground plate 52, the lower contact 44, and the lower ground plate 56 are disposed at predetermined positions in a predetermined mold and the members are integrated by means of a first resin 62 as the first insert molding (Step S1 in
As illustrated in
During the first insert molding, a part of the mold is inserted from above through the through hole 53 provided in the intermediate ground plate 52 and the lower contact 44 and the lower ground plate 56 are held by the part of the mold. Then, a situation in which the lower contact 44 and the lower ground plate 56 deflect toward the intermediate ground plate during the insert molding is suppressed.
After the first insert molding, the upper contact 42 and the upper ground plate 54 are disposed at predetermined positions in the predetermined mold and the members are integrated by means of a second resin 64 as second insert molding (Step S2 in
After the second insert molding, a molded body set 36 in which the second molded body 34 is disposed on the first molded body 32 is formed as illustrated in
In other words, the first resin 62, the second resin 64, and the third resin 66 described above constitute the resin molded body 60 of the connector assembly 30.
As illustrated in
The tube portion 12 has a flat shape having an elliptical and annular cross section and extends along the X direction. The tube portion 12 covers the whole of the connecting portion 70 of the connector assembly 30, and the rear end of the tube portion 12 is fitted to the main body portion 80.
The fitting between the tube portion 12 and the main body portion 80 will be described with reference to
As illustrated in
Accordingly, the stress and the frictional force with respect to an inner peripheral surface 12a of the tube portion 12 increase from the front main body portion 86 and the tube portion 12 is firmly fitted to the front main body portion 86 once the tube portion 12 is press-fitted to the front main body portion 86 along the X direction after the tube portion 12 is disposed so as to come into contact with the outer periphery of the front main body portion 86. As illustrated in
The extending portions 14A and 14B of the shell 10 extend from one end of the shell 10 toward the main body portion 80. Specifically, the extending portions 14A and 14B extend toward the main body portion 80 along the X direction from both Y-direction end portions of the rear end of the tube portion 12.
The extending portions 14A and 14B are elongated and equal in width to each other. The extending portions 14A and 14B are inserted through the through holes 84a provided in the flange portions 84A and 84B of the main body portion 80, respectively. The flange portions 84A and 84B are positioned in front of spring portions 59A and 59B in the X direction and shield the spring portions 59A and 59B when viewed from the front in the X direction, respectively. As illustrated in
By means of the conductive shell 10 described above, it is possible to suppress a situation in which the connector assembly 30 is affected by electromagnetic waves from the outside and a situation in which electromagnetic wave noise generated in the connector assembly 30 affects an electronic device around the electrical connector 1.
As illustrated in
The internal waterproof portion 22 is a part with which the opening 82 of the main body portion 80 is filled. The internal waterproof portion 22 covers the part of each contact 40 and each ground plate 50 that is exposed from the opening 82 of the main body portion 80. Specifically, as illustrated in
As illustrated in
The external waterproof portion 24 has a thin film portion 24b that thinly covers the surface of the rear end of the tube portion 12 of the shell 10. The thin film portion 24b is provided integrally with respect to the external waterproof portion 24 and covers an interface B between the rear end surface of the tube portion 12 and the waterproof member 20 over the entire circumference.
As described above, the electrical connector 1 is provided with the waterproof member 20 having the internal waterproof portion 22 and the external waterproof portion 24 in the main body portion 80, and the internal waterproof portion 22 and the external waterproof portion 24 are integrated with each other. Accordingly, the internal waterproof portion 22 covers the exposed portions 42c and 44c of the upper contact 42 and the lower contact 44 in the opening 82 of the main body portion 80, and rearward water immersion of the main body portion 80 along the upper contact 42 and the lower contact 44 is prevented. In addition, the external waterproof portion 24 surrounds the entire circumference of the main body portion 80 and prevents water immersion between the electrical connector 1 and the inner wall 4 of the accommodating space C of the electronic device 2. Since the internal waterproof portion 22 and the external waterproof portion 24 are integrated as described above, both internal waterproofing and external waterproofing can be realized with the simple configuration of the single waterproof member 20 in the electrical connector 1 described above.
Accordingly, assembly work can be simpler than in a case where an internal waterproofing member and an external waterproofing member are combined with each other so that both internal waterproofing and external waterproofing are realized. As a result, manufacturing cost reduction and manufacturing facility efficiency improvement can be achieved.
It should be noted that the waterproof member 20 does not necessarily have to be made of a single material and a configuration using a plurality of materials (such as two-color molding) may be adopted for the waterproof member 20 insofar as the internal waterproof portion 22 and the external waterproof portion 24 are integrated with each other in the configuration.
The electrical connector 1 described above does not necessarily have to be provided with both the upper contact 42 and the lower contact 44. The electrical connector 1 described above may be configured to be provided with either the upper contact 42 or the lower contact 44. In addition, in the electrical connector 1, the number of contacts constituting the upper contact 42 and the lower contact 44 can be appropriately increased or decreased. Further, each of the ground plates 50 is optional and a configuration lacking, for example, the intermediate ground plate 52 can be adopted as well. Also, the electrical connector I may be configured without the shell 10.
In the electrical connector 1, the tube portion 12 is firmly fitted to the front main body portion 86 of the main body portion 80 by the rear end of the shell 10 being fitted to the front end (front main body portion 86) of the main body portion 80 with the front main body portion 86 inclined such that the outer shape dimension of the front main body portion 86 to be joined to the rear end of the tube portion 12 of the shell 10 expands rearward from the front in the direction of connection (X direction).
The thin film portion 24b of the external waterproof portion 24 covers the interface B between the rear end surface of the tube portion 12 and the waterproof member 20 over the entire circumference, and thus a situation in which water intrudes into the electrical connector 1 from the interface B is significantly suppressed. In addition, the water immersion path that reaches the interface B can be extended to the same extent as the width (X-direction length) of the thin film portion 24b, and thus no water is likely to intrude into the electrical connector 1.
In the electrical connector 1, the connecting portion 70 has the first resin 62 (first resin portion) holding the lower contact 44 with respect to the intermediate ground plate 52 and the second resin 64 (second resin portion) holding the upper contact 42 with respect to the intermediate ground plate 52 and separate from the first resin 62. Also provided is the third resin 66 (third resin portion) covering the first resin 62 and the second resin 64 and separate from the first resin 62 and the second resin 64.
As described above, the first resin 62 is for lied by the first insert molding (Step S1 in
Deflection of the lower contact 44 can be suppressed by a predetermined mold being used during the first insert molding. Specifically, a situation in which the lower contact 44 deflects toward the intermediate ground plate 52 is suppressed by a mold that has a part which can be inserted through the through hole 53 provided in the intermediate ground plate 52 being used and insert molding being performed in a state where the lower contact 44 is held by the mold. Also during the second insert molding, deflection of the upper contact 42 can be suppressed by a predetermined mold being used. During the second insert molding, the intermediate ground plate 52 is not integrated, and thus the upper contact 42 is unlikely to deflect.
The disposition and the shape of the mold that is used for each molding step can be appropriately changed based on the above-described division into the first insert molding (step for molding the first molded body 32) and the second insert molding (step for molding the second molded body 34). As a result, deflection of the upper contact 42 and the lower contact 44 can be suppressed. Accordingly, the upper contact 42 and the lower contact 44 are capable of realizing a high level of relative positional accuracy with respect to the intermediate ground plate 52.
During the first insert molding, a part of the mold is inserted from above through the through hole 53 provided in the plate-shaped portion 52a of the intermediate ground plate 52 and the lower contact 44 can be held so as not to deflect upward. In a case where the intermediate ground plate 52 is integrated during the second insert molding without being integrated during the first insert molding, the upper contact 42 can be held so as not to deflect downward by a part of the mold being inserted from below through the through hole 53 during the second insert molding.
The first resin 62, the second resin 64, and the third resin 66 may be resin materials of the same type or resin materials of different types.
In the electrical connector 1, the shell 10 has the tube portion 12 and the extending portions 14A and 14B. The extending portions 14A and 14B are elastically connected to the spring portion 59 by extending to the spring portion 59 (ground member) of the back ground plate 58 of the main body portion 80.
The shell 10 and the back ground plate 58 can be electrically connected to each other by the extending portions 14A and 14B of the shell 10 being elastically joined to the spring portion 59 of the back ground plate 58. In other words, the shell 10 and the back ground plate 58 can be electrically interconnected with a simple configuration without welding. As a result, the electrical connector 1 can be relatively inexpensive. In the electrical connector according to the related art, electrical connection between a shell and a back shell (back ground plate) is realized by welding, and thus pre-welding electrical connection is insufficient and initial electrical connection is possible after the welding. Accordingly, in the electrical connector according to the related art, insufficient electrical connection may arise in the event of a shell-back shell welding problem. In the electrical connector 1 described above, in contrast, insufficient electrical connection attributable to a welding problem does not occur and the shell 10 and the back ground plate 58 can be electrically interconnected with reliability.
In the electrical connector 1, the shell 10 and the back ground plate 58 are not welded to each other, and thus no welding facility is necessary and manufacturing cost reduction can be achieved. In addition, welding work-related labor and time can be reduced and manufacturing efficiency improvement can be achieved.
1: electrical connector, 2: electronic device, 3: substrate, 4: inner wall, 10: shell, 12: tube portion, 14A, 14B: extending portion, 20: waterproof member, 22: internal waterproof portion, 24: external waterproof portion, 30: connector assembly, 32: first molded body, 34: second molded body, 36: molded body set, 40, 42, 44: contact, 42c, 44c: exposed portion, 50, 52, 54, 56, 58: ground plate, 59, 59A, 59B: spring portion, 60: resin molded body, 62: first resin, 64: second resin, 66: third resin, 70: connecting portion, 80: main body portion, 82: opening, 84A, 84B: flange portion, 84a: through hole, C: accommodating space.
Number | Date | Country | Kind |
---|---|---|---|
2017-117195 | Jun 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/016355 | 4/20/2018 | WO | 00 |