1. Fields of the Invention
The invention relates to an electric cushioning mechanism of a treadmill, and more particularly, to a structure that is electrically driven to allow the operator to freely conduct a fine adjustment of the reactive cushioning intensity at any time, thereby fully meeting the personal requirements of use.
2. Description of the Related Art
At present, rubber pads interposed between the base frame and the platform of the treadmill often serve as cushioning elements for treadmills. When the platform is subject to compression, the rubber pads provide a cushioning force such that the reactive force acting on both feet of the operator during the exercise session tends to be reduced.
However, after observation and assessment of actual performance for a long period, most of the operators still think that the conventional cushioning elements are not ideal. Moreover, they are also not satisfied with the fixed type cushioning elements that are not freely adjustable. The physiological feelings for the comfort are significantly different from one another. As a result, we can see that the universal structural design with a single cushioning force is not properly in line with the actual needs of most operators.
Currently, various types of means for manually adjusting the cushioning force have been developed for resolving the above-mentioned problem. However, the operator has to adjust the setting values before use. Thereafter, he must stand on the treadmill for a trial walking or running for a short time to feel the comfort after adjustment. The operator has to repeat this process until an optimal cushioning force for himself is reached.
By the above brief description, we know that the above-mentioned improved design still has its inconvenience. Moreover, the operator must be discouraged to use the treadmill due to the repeated adjustment before use. Accordingly, the conventional structure requires further improvements.
A primary object of the invention is to provide an electric cushioning mechanism of a treadmill that permits an electric fine adjustment such that, in the beginning of the operation, the operator may directly stand on the treadmill for a trial walking or running. At the same time, a fine adjustment of the cushioning intensity may be directly carried out by an electric button. In this way, an operator-oriented adjustment to meet the requirements of comfort in a short time is achieved. Even, the operator may change the adjustment according to his physical state. As a result, a convenient and practical use is ensured.
According to the invention, an electric cushioning mechanism of a treadmill includes a cushioning rod assembly positioned at the rear end of the front support frame. The cushioning rod assembly is coupled to an electric cushioning mechanism. The electric cushioning mechanism includes a linking support, a cushioning drive motor, a slide element, and a slope guide plate. The linking support is provided with a roller at the bottom of both sides thereof, respectively. The cushioning drive motor has a guide screw rod. A pushing slope is formed at the bottom of both sides of the slide element. The pushing slope pushes against the slope guide plate. The roller of the linking support tends to slide on the path with different slopes by use of the angular change on the slope guide plate, thereby creating different reactive cushioning forces
The accomplishment of this and other objects of the invention will become apparent from the following description and its accompanying drawings of which:
The present invention will now be described in more detail hereinafter with reference to the accompanying drawings that show various embodiments of the invention.
Referring to
A cushioning rod assembly 20 is positioned at the rear end of the front support frame 18. The cushioning rod assembly 20 is coupled to an electric cushioning mechanism 30. The electric cushioning mechanism 30 includes a linking support 32, a cushioning drive motor 34, a slide element 36, and a slope guide plate 37. The linking support 32 is provided with a roller 31 at the bottom of both sides thereof, respectively. The cushioning drive motor 34 has a guide screw rod 33. A pushing slope 35 is formed at the bottom of both sides of the slide element 36. The pushing slope 35 pushes against the slope guide plate 37. The roller 31 of the linking support 32 tends to slide on the path with different slopes by use of the angular change on the slope guide plate 37, thereby creating different reactive cushioning forces.
The cushioning drive motor 34 is disposed on a fixing rib 151 of the primary base frame 15 such that the guide screw rod 33 passes through the fixing rib 151 and is screwed to the slide element 36.
Furthermore, the cushioning rod assembly 20 is connected to the linking support 32 by use of a connecting rod 21 and an elastic element 22. When the front support frame 18 is forced to pull the linking support 32, the elastic element 22 produces an initial and proper cushioning effect first. Thereafter, as shown in
Many changes and modifications in the above-described embodiments of the invention can, of course, be carried out without departing from the scope thereof. Accordingly, to promote the progress in science and the useful arts, the invention is disclosed and is intended to be limited only by the scope of the appended claims.