The invention relates to an electric device assembly with an assembly housing that contains electric and/or electronic components and is insertable into a frame housing.
It is an object of the present invention to further develop an electric device assembly of the aforementioned kind in such a way that with simple means a risk-free and safe exchange of the assembly housing is possible without having to switch off beforehand the operating device, or parts thereof, or to separate electric connecting lines.
In accordance with the present invention, this is achieved in that the electric device assembly comprises a frame housing that has electric connectors, an assembly housing that contains electric and/or electronic components and is insertable into the frame housing, a plug connector that is provided with at least one contact tube and at least one contact pin engaging the contact tube, and a lock system that acts on the plug connector and comprises an actuator that is pivotable about a pivot axis.
In a preferred embodiment, the contact pin is correlated with a plug that is arranged on the bottom side of the assembly housing that is facing the frame housing.
The contact pin is surrounded by a circumferential wall of the plug that is arranged at a spacing to the contact pin.
The plug with the circumferential wall has an approximately rectangular shape in cross-section.
The contact pin of the plug is correlated with the electric or electronic components of the assembly housing.
The contact tube is correlated with a plug receptacle that is arranged on the topside of the frame housing that is facing the assembly housing.
The contact tube of the plug receptacle is surrounded by a boundary wall.
The plug receptacle with the boundary wall has in cross-section an approximately rectangular shape.
The contact tube of the plug receptacle is correlated with electric supply lines and electric outgoing lines.
The contact tube its arranged in an electrically non-conducting insulating body.
The insulating body with the contact tube is floatingly supported in the plug receptacle.
The insulating body comprises an insertion part that projects past the tube opening of the contact tube and has an insertion bore for the contact pin.
The insertion bore in the insertion part of the insulating body has a diameter that is slightly greater than the diameter of the contact pin.
Between the circumferential surface of the contact pin and the inner surface of the insertion bore a spark ignition-proof or flame-proof explosion protection gap is formed that fulfills the regulations of explosion protection.
The circumferential wall of the plug engages a slot-shaped cutout of the plug receptacle.
The frame housing has at least one support wall that rests against a sidewall of the assembly housing.
On the sidewall of the assembly housing at least one stay is arranged that is guided within a longitudinal groove that extends in the insertion direction of the assembly housing and is formed within the support wall of the frame housing.
The actuator of the lock system is secured on the frame housing by a blocking device in a non-releasable way, wherein the blocking device comprises a blocking member that is preferably formed on the support wall and engages a blocking member receptacle formed on the actuator.
The actuator of the lock system is pivotably supported on the support wall of the frame housing.
The pivotable connection of the actuator comprises at least one bearing part that is arranged in a bearing receptacle.
The bearing part is provided on the actuator and the bearing receptacle is provided in the support wall of the frame housing.
The lock system of the plug connector comprises at least one locking pin that engages an approximately semi-circular guide groove.
The locking pin is provided on the sidewall of the assembly housing and the guide groove is formed in the bearing part of the actuator.
The part-circular guide groove extends from an insertion opening that is provided on the circumferential rim of the bearing part approximately radially in the direction toward the pivot axis of the actuator.
The bearing receptacle in the support wall of the frame housing has an inlet opening for the locking pin which inlet opening, when the actuator is pivoted into a release position, is aligned with the insertion opening of the guide groove.
When the locking pin is inserted into the inlet opening and into the insertion opening of the guide groove, the assembly housing is moveable in the direction against the frame housing exclusively by pivoting the actuator.
After insertion of the locking pin into the insertion opening and a minimal pivoting of the actuator in the direction toward the locked position, the locking pin is positive-lockingly secured in the guide groove to prevent the locking pin from sliding out of the insertion opening of the guide groove.
After insertion of the locking pin into the insertion opening and minimal pivoting of the actuator in the direction toward the locked position, between the contact pin and the contact tube in the insulation body a minimum contact spacing is provided that fulfills the regulations of explosion protection.
After insertion of the locking pin into the insertion opening and pivoting of the actuator into the locked position, the contact pin engages the contact tube.
The actuator is secured in the locked position by an abutment that impacts on a locking cam to prevent accidental return pivoting into the release position.
The frame housing is detachably secured by means of a movably supported locking device on a support rail in the form of a cap rail or top hat rail that is in cross-section approximately U-shaped.
The locking device in the locked position of the actuator is secured against accidental movement by a locking edge resting against a locking edge of the actuator.
The oppositely positioned sidewalls of the assembly housing each are provided with a locking pin and a stay and the frame housing has two parallel and spaced apart support walls that each have a bearing receptacle with an inlet opening as well as a locking cam, a longitudinal groove, and a blocking member. The two support walls are connected by means of an end wall. The actuator is provided with two legs and a grip part connecting the two legs so that the actuator is an approximately U-shaped bracket. The two legs each are provided with a bearing part with guide groove and insertion opening; an abutment; a looking edge;
and a blocking member receptacle.
The electric device assembly 1 is provided for use in dangerous areas, in particular in explosion-hazardous areas, and comprises a frame housing 2, an assembly housing 3, and an actuator 4 that belongs to a releasable lock system for locking the assembly housing 3 that is insertable into the frame housing 2.
The frame housing 2 has a base member 5 releasably attached to a support rail (cap rail or top hat rail) 6 that is approximately U-shaped in cross-section. For providing the releasable connection of the frame housing 2 on the base member 5 a locking device 7 is provided that is supported on the base member 5 so as to be movably transversely to the longitudinal direction of the cap rail 6. On the side of the rail 6 opposite the locking device 7 the base member 5 has a plug receptacle 8 with several contact tubes 9 that are spaced apart from one another. The contact tubes 9 are surrounded by a boundary wall 10 that is expediently formed of four walls with neighboring ones positioned at a right angle to one another so that the plug receptacle 8 in cross-section is substantially rectangular.
Each individual contact tube 9 is located in an electrically non-conducting insulation body 11 that may be embodied as a cylinder of approximately circular cross-section. The insulation bodies 11 can be significantly longer than, preferably approximately twice as long as, the contact tubes 9 that are arranged expediently in the lower part of the insulation bodies 11 so that an insertion part 12 of the insulation bodies 11 projects significant past the tube opening 13 of the contact tubes 9. The insertion part 12 of the insulation bodies 11 has an insertion bore 14 that is arranged coaxially to the contact tube 9 and into which a contact pin 15 is insertable. In order to facilitate introduction of the contact pin 15 into the insertion bore 14, the insulation bodies 11 with the contact tubes 9 can be floatingly supported in the plug receptacle 8. On the contact tubes 9 moreover a sleeve-shaped connecting part 16 can be formed which project from the plug receptacle 8 and to which electrical lines are connected, for example, by soldering or crimping.
On the topside of the base member 5 support walls 17, 18 that are parallel to and spaced apart from one another are provided and connected to one another by means of transversely arranged end wall 19 so that a receiving space is provided that is delimited on three sides. On each of the two support walls 17, 18 there is a circular bearing receptacle 20; the bearing receptacles 20 are positioned opposite one another. Each bearing receptacle 20 comprises an inlet opening 21 that is formed in the support walls 17, 18 as a slot-shaped cutout. Moreover, the support walls 17, 18 are provided at their inner sides with oppositely positioned longitudinal grooves 22 that extends in the insertion direction of the assembly housing 3. The exterior sides of the support walls 17, 18 each have oppositely positioned locking cams 23. Moreover, the support walls 17, 18 each have a blocking member 51 that is arranged adjacent to the circumferential area of the bearing receptacles 20.
The assembly housing 3 is substantially embodied as a rectangular body and has at its bottom side facing the frame housing 2 a plug 24 mating with the plug receptacle 8 is provided. The plug 24 is delimited by a circumferential wall 25 that is formed of four wall parts with neighboring ones positioned at a right angle relative to one another, respectively. The plug 24 with the circumferential wall 25 is thus in cross-section substantially rectangular. The circumferential wall 25 surrounds the contact pins 15 that are positioned at a spacing to one another and are connected electrically conductingly with electric or electronic components arranged within the assembly housing 3. The diameter of the contact pins 15 is selected such that it is minimally smaller than the diameter of the insertion bore 14 of the insulation bodies 11 in the frame part 2. When the plug 24 is inserted into the plug receptacle 8, between the circumferential surface of the contact pins 15 and the inner surface of the insertion bores 14 there is a flame-proof or spark ignition-proof gap 33 that is defined by DIN EN 50018 and DIN EN 60079.
On spaced apart parallel sidewalls 26, 27 of the assembly housing 3 there is a locking pin 28, respectively; these locking pins 28 are positioned opposite one another and project in opposite directions and outwardly. Moreover, on the exterior sides of the sidewalls 26, 27 a stay 29 is provided, respectively, and the stays 29 are positioned opposite one another. The wall section 30 of the sidewalls 26, 27 is somewhat inwardly recessed and delimited by an approximately wave-shaped edge contour 31. In accordance with this edge contour 31 the outer rims of the support walls 17, 18 also have an approximately wave-shaped end face contour 32 that matches the edge contour 31 in the completely assembled state illustrated in
The actuator 4 has two spaced apart, parallel legs 34, 35 and a grip part 36 that is slightly curved and connects the legs 34, 35 so that the actuator 4 is substantially embodied as a U-shaped bracket. The actuator 4 is arranged on the support walls 17, 18 of the frame housing 2 and is pivotably supported. For this purpose, a bearing part 37 is arranged on the inner faces of the legs 34, 35 at their free ends, respectively, and these bearings parts 37 are positioned mirror-symmetrically opposite one another and each have a guide groove 38. The bearing parts 37 are embodied as circular disks and are positive-lockingly supported in the bearing receptacles 20 of the support walls 17, 18 wherein the center axes of the annular bearing parts 37 form the pivot axis of the actuator 4.
Adjacent to the circumferential area of the bearing parts 37 on the legs 34, 35 of the actuator 4 a blocking member receptacle 52 is formed, respectively. The blocking members 51 of the support walls 17, 18 engage positive-lockingly these receptacles 32 in such a way that the actuator 4 is secured captively in its end positions as well as during its pivot movement and cannot be removed from the support walls.
The guide grooves 38 are embodied approximately radially in the bearing parts 37 and extend from an insertion opening 39 formed at the circumferential rim of the bearing parts 37 approximately semi-circularly in the direction toward the center axis of the bearing part 37. The width of the guide grooves 38 is sized such that they are approximately identical or only slightly greater than the diameter of the locking pins 28 so that the latter are guided substantially without play in the guide grooves 38. Moreover, on the inner sides of the two legs 34, 35 of the actuator 4 there are two abutments 40 that are mirror-symmetrically positioned opposite one another and rest against a stop 41 of the locking cam 23. A ramp 42 for the locking cam 23 is arranged in front of the abutments 40 and a recess 43 is arranged behind the abutments 40, respectively. Moreover, the actuator 4 has on its legs 34, 35 nose-shaped projections 44 that have on their inner sides mirror-symmetrically arranged opposed locking edges 45. In the locked position of the actuator 4 the projections 44 engage across a wall part 46 formed on the oppositely positioned sides of the locking device 7. The wall parts 46 have a locking edge 47 resting against the locking edge 45 of the projection 44 so that an accidental displacement or movement of the locking device 7 into a release position is prevented.
In
The
As can be seen in
In
When the assembly housing 3, for example, in case of a defect during operation must be exchanged, the afore described mounting process is to be carried out in reverse. This means that first the securing action of the locked position of the actuator 4 must be released or canceled. Then the actuator 4 is to be pivoted in clockwise direction into the release position illustrated in
One advantage of the device assembly 1 according to the invention resides in that in critical explosion-hazardous environments the active assembly, i.e., the assembly housing 3 with the electric and/or electronic components, can be exchanged in the operating state without any risk or danger and without having to switch off the facility. Therefore, no connections that are fixedly realized by connecting lines must be interrupted; all connections remain intact within the base housing, i.e., the frame housing 2. Neither during insertion nor during removal of the assembly housing 3, sparks that are produced in the interior of the plug connector can cause ignition of an explosive surrounding atmosphere because of the described measures so that, as a whole, a great safety standard is provided.
The specification incorporates by reference the entire disclosure of German priority document 10 2009 005 051.5 having a filing date of Jan. 15, 2009.
While specific embodiments of the invention have been shown and described in detail to illustrate the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 005 051.5 | Jan 2009 | DE | national |