Refrigerated display cases are used in liquor stores, convenience stores, food vending establishments, and other facilities to keep food and beverage products cold, thereby to keep them fresh and/or to maintain them at desired cold consumable temperatures, or for some display cases to keep the products frozen. The products can be accessed by customers by sliding or pivoting the case doors open. The doors typically have transparent windows allowing customers to view the stored products before opening the doors to help the customers quickly determine whether the desired product is in the case before opening the door. This not only makes it easier for the customer but also reduces the frequency and length of time that the door is open and prevents ambient heat being transferred into the refrigerated display case.
The refrigerated display case doors can have mechanical key-actuated locks to individually lock each of the doors when the facility is closed to the public to prevent theft from the cases. Also, some or all of the doors in the cases in the facility can be locked when the facility is open to prevent customer access to the products in those specific cases. For example, in some areas of the country, beer, wine and other cold alcoholic beverages cannot be sold on certain days or at certain times of the day without violating local laws. In those jurisdictions, proprietors of facilities (such as convenience stores) where beer, wine and the like are sold from refrigerated display cases may voluntarily or may be required to lock the doors of their refrigerated display cases which contain such products when their facilities are open to the public to sell other products during those days and at those times. They do so using the above-mentioned individual key locks for each of the doors.
In accordance with the invention, an electric door lock assembly embodiment thereof includes a mounting bracket adapted to be mounted to a door or a door frame, a pull-type (or push-type) solenoid secured to the bracket and having a plunger, a pivot pin secured to the bracket, and a bolt (or locking arm) pivotally connected at one end to the plunger and having an elongate slot in which the pivot pin is disposed. The solenoid, when electrically energized, moves the plunger from an extended position to a retracted position, which causes the bolt to pivot about the pivotal connection and also to simultaneously pivot and linearly slide relative to the pivot pin. Thereby the bolt is moved from an unlocked position to a locked position. Alternatively, the assembly can be constructed such that the bolt is moved from the locked to the unlocked position when the solenoid is energized. This electric door lock assembly can be used to lock doors of refrigerated display cases and the like.
According to another aspect of the invention, an electrical door lock assembly embodiment thereof includes a solenoid having a plunger movable between retracted and extended positions, and mounting means for mounting the solenoid to a door or to a door frame so that the plunger is vertically disposed and operatively moves along a vertical axis between the retracted and extended positions. A locking arm is pivotally connected at a proximal end thereof to the plunger. Pivoting means causes rotational and linear pivoting of the arm relative to a horizontal axis as the plunger is moved between the retracted and extended positions, which moves a distal end of the arm between door unlocked and locked positions.
The invention can be implemented to achieve one or more of the following advantages. A timing mechanism can be operatively connected to the solenoid of the door lock assembly to energize the solenoid and thereby move the assembly to a locked position automatically at one or more predetermined times or days. Further, the timing mechanism can be operatively connected to the solenoids of a plurality of the door lock assemblies within the facility to simultaneously lock them at the predetermined times. For example, if a local law in the jurisdiction of the facility requires that no beer or wine may be sold after 5 p.m. on Saturday, the timing mechanism can be set so that all of the doors to all of the facility's display cases which have beer or wine in them are automatically locked at 5 p.m. every Saturday or shortly before that time.
This timing mechanism helps ensure that the facility complies with that local law. The facility employees need not remember or take the time away from their other work duties to individually lock each of the doors. It further does not require that the employees have keys to lock the doors, keys which can become lost, broken or misused. Additionally, the display cases and the timing mechanism can be used such that only doors accessing display cases having beer or wine in them will be locked; and those which do not have beer or wine in them but rather have food, non-alcoholic drinks (e.g., soft drinks) and so forth, will not be locked, or are locked at different times.
The above-mentioned timing mechanism can also be adapted to automatically unlock all of the locked doors at the appropriate time, such as at the opening time of the facility the following morning. This would ensure that all of the display doors are unlocked, thereby not frustrating or discouraging customers who try to open a locked display case door, and would also save the employees the time and trouble of unlocking the doors, especially if the locks are key-locks and the keys cannot be located.
According to a further aspect of the invention, a door locking and/or unlocking method including the step of at least one of energizing or de-energizing a solenoid of a door lock assembly connected to a door is disclosed. The solenoid is mounted so that its plunger is operatively movable between retracted and extended positions. The door lock assembly includes a locking arm pivotally connected at a first end to the plunger and means for causing concurrent rotational and linear movement, about a pivot pin whose axis is fixed relative to the door or door frame, of a second end of the locking arm between door locked and unlocked positions-relative to a keeper as the solenoid is energized and/or de-energized.
Other objects and advantages of the present invention will become more apparent to those persons having ordinary skill in the art to which the present invention pertains from the foregoing description taken in conjunction with the accompanying drawings.
Referring to the drawings wherein like reference numerals in the various drawings indicate like parts, a refrigerated display case is shown in
Wall 64 can have one or more customer-access openings, and three are depicted in the embodiment of
The electric door lock assembly of the present invention can have a number of embodiments, a first of which is illustrated generally at 90 in
The electric door lock assembly 90 also includes a locking bolt 128 which can be shaped as a flat locking arm 130 having a hooked or curved proximal end 132 and an angled distal or working end 134. The proximal end 132 is attached with a pivotal connection 140 in a bottom slot 144 of the plunger 116. The arm 130 has a slot 150 disposed along the longitudinal axis of the arm and down the middle of the arm. Although the slot 150 is depicted in the drawing figures as a through-slot, it alternatively can be configured as a channel.
Mounted perpendicular to the back plate 100 of the mounting bracket 94 and generally between but outside of the top and bottom plates 104, 108 is a pivot pin 160. The pivot pin 160 extends up (or out) through the slot 150. The arm 130 can pivot about and slide along the pivot pin 160, as will be described below. A standoff on (or affixed to) the pivot pin 160 and inside of the arm and a retaining ring 174 on the pivot pin and outside of the arm 130, together hold the arm relative to the pivot pin while still allowing the pivotal and sliding movement of the arm relative to the pivot pin, which is disposed in the slot 150.
When it is desired to lock the door, the solenoid 112 is energized by current flowing through the lead wires 176, which creates an electromagnetic field in the solenoid, drawing the (metallic) plunger 116 up from the extended position of
To unlock the lock assembly, the solenoid 112 is de-energized. This releases the plunger 116 from its retracted position of
The energizing and de-energizing of the solenoid 112 can be programmed to occur automatically at the desired times and days. For example, as discussed in the Summary of the Invention section above, if the law in the jurisdiction prohibits the sale of beer and wine after 5 p.m. on Saturdays, the solenoid 112 can be programmed to be energized (or de-energized) and cause the locking arm 130 to move to the locked position at 5 p.m. (or shortly before) on Saturdays. The construction and operation of a suitable programming and energizing mechanism would be readily apparent to those of ordinary skill in the art from this disclosure.
Many refrigerated display cases have more than one door, such as the display case 50 illustrated in
The electric door lock assembly 200 of
The pivot pin 280 of this assembly 200 has a slightly different construction but functions the same as that of assembly 90. It has a large body portion 284 with a small end which fits into an opening 294 in the backing plate 210, for a left configuration of
The back plate 210 of this embodiment lacks the long single leg of the other embodiment, but has opposing short legs 320, 324 instead on opposite sides of the abutment plate 218. The angled distal end 334 of the locking arm 270 pivots downwardly and moves outwardly to a locking position as the plunger 236 is retracted. Fasteners 336 through openings 338 in the back plate 210 mount assembly 200 in place.
When in the locking position, the working end of the locking arm 270 extends into a slot or keeper 340. The keeper can be a sturdy angled member 344 as shown in
When a refrigerated display case includes more than one door and more than one door locking assembly, the respective solenoids can be electrically connected as shown schematically in
Thus, many different alternatives or embodiments of the invention are possible. For example, the plunger can extend up instead of down relative to the solenoid. Instead of a pull-type solenoid, a push-type or even a rotary solenoid can be used. The lock can be unlocked instead of locked when the solenoid is energized. In other words, the lock assembly can be moved to a locking condition by energizing the solenoid (or by de-energizing it). Further, the default condition, such as in the event of a power failure, can be a locked or unlocked condition, as desired, and is preferably the unlocked condition.
From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the art. Further, the scope of the invention includes any combination of the elements from the different species or embodiments disclosed herein, as well as subassemblies, assemblies, and methods thereof. It is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof.
Number | Name | Date | Kind |
---|---|---|---|
1736761 | Haffner | Nov 1929 | A |
1989419 | Hill | Jan 1935 | A |
2677814 | Miller | May 1954 | A |
2960046 | Clark | Nov 1960 | A |
3377092 | Rohman | Apr 1968 | A |
3576337 | Gudde | Apr 1971 | A |
3643479 | Solow | Feb 1972 | A |
3749435 | Balzano | Jul 1973 | A |
3751088 | Schlage | Aug 1973 | A |
3890608 | Peterson | Jun 1975 | A |
3988859 | Peterson | Nov 1976 | A |
4099752 | Geringer | Jul 1978 | A |
4126341 | Bradstock | Nov 1978 | A |
4141610 | Ando | Feb 1979 | A |
4470625 | Walsh et al. | Sep 1984 | A |
4509347 | Young | Apr 1985 | A |
4579376 | Charlton | Apr 1986 | A |
4691542 | Young | Sep 1987 | A |
4881766 | Schmidt et al. | Nov 1989 | A |
4913475 | Bushnell et al. | Apr 1990 | A |
5284371 | Richardson et al. | Feb 1994 | A |
5339662 | Goldman | Aug 1994 | A |
5755126 | Lanigan et al. | May 1998 | A |
5871263 | Johnston et al. | Feb 1999 | A |
6367223 | Richardson et al. | Apr 2002 | B1 |
6578978 | Upton et al. | Jun 2003 | B1 |
6745603 | Shaw | Jun 2004 | B1 |
7295110 | Mercier et al. | Nov 2007 | B2 |
7296448 | Shaw | Nov 2007 | B1 |
20020180580 | Gotfried | Dec 2002 | A1 |
20050144991 | Bravo et al. | Jul 2005 | A1 |
20050183480 | Hingston et al. | Aug 2005 | A1 |
20070152455 | Ko et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080066506 A1 | Mar 2008 | US |