The present invention relates to a facility operating according to galvanic principles such as a battery or an accumulator, particularly a lithium-ion battery.
A high-energy storage density characterizes batteries or accumulators, particularly lithium-ion batteries having been developed in the recent years. On the one hand, this allows the provision of high charge capacities or current capacities, on the other hand results in a heating of the battery, respectively the accumulator, during the charging operation, respectively discharging operation, during charging, respectively discharging of the battery, respectively the accumulator. Excessive heating results in a decrease of the capacity of the battery, respectively the accumulator, deterioration of the rechargeability, and decrease of the number of possible discharging and recharging cycles, in other words, results in the decrease of the durability of the battery, respectively the accumulator. In particular for lithium-ion-batteries, the person skilled in the art is familiar with the problem of the “thermal runaway”, in which from a certain threshold temperature, respectively a certain heat generation, the increase of the temperature intensifies itself and which, if this process is not reduced, results in a self-destruction of the lithium-ion battery. The problems associated with the heating appear in an intensified manner in facilities having a high-energy storage density and high capacity such as also in stacked assemblies of batteries, respectively accumulators, in which the heat dissipation via the housing walls of the facilities is limited.
The present invention is based on the problem to reduce the heating of facilities operating according to galvanic principles.
This problem is solved by a facility operating according to galvanic principles such as, in particular, a battery, respectively an accumulator, particularly a lithium-ion battery, comprising a housing and at least one first current conductor protruding from the housing, and which is characterized in that it comprises at least one first heat conducting facility that is connected to the first current conductor in heat flow communication, and that is developed such to allow for conducting thermal energy from the first current conductor. By means of the thermal flow communication with the first current conductor, which in turn is electrically connected to the electrodes that are arranged within the housing of the device, heat is conducted from the interior of the facility via the first current conductor and the first heat conducting facility, additionally to the heat conduction from the interior, by means of heat conduction and deflection via the housing surfaces, respectively the housing walls.
The term battery as used herein defines a container that consists of one or several internal cells, respectively electric storage cells, in which chemical energy is transferred to electricity, respectively electric energy, and which is used as a source of electric power.
The term accumulator as used herein defines a rechargeable cell, respectively an electric storage cell or battery, which is used as a source of electric power.
The term current conductor as used herein defines a device that conducts an electric current, which, at an electrode such as the cathode and the anode, conducts the electric charge, respectively current that is generated within an electric storage cell, from the electrode beyond the cell, as the case may be by feeding said electric charge, respectively current, through the housing wall of the cell. For example, the device-conducting current may be a line wire or a line plate that is produced, in particular, from a metal or a metal alloy. Within the cell, an internal end of the current conductor may be connected to the electrode in an electrically conducting manner. Beyond the cell, another end of the electrically conducting device may be connected in an electrically conducting manner to a connection for collecting, respectively providing the current, and for connecting to a connection assembly or clamp connection, or may be directly developed as a connection as such.
The term heat flow communication as used herein defines a connection, respectively a coupling of two elements such as a heat conducting facility comprising a current conductor that is developed such to effectively transfer a heat flow from the one to the other element, i.e. having good heat conduction and low resistance for the heat flow. The heat flow communication may be provided by means of a close, preferably laminar, particularly positive and/or non-positive connection between surfaces of the coupled elements. Between the elements, also a thermally conductive foil and/or layer may be provided that is developed such, in particularly soft and/or flexible, to balance any unevenness of contacted surfaces of the coupled elements, and to intensify the contact between the contacted surfaces.
The term heat conducting facility as used herein defines a device that is made of a heat conducting material for conducting, respectively dissipating thermal energy (heat energy) from a first location where, for example, a heating is reduced, or a cooling is effected, e.g. cooling of an article, to a second different location, where the heat energy may dissipate, e.g. may be converted to another energy form, or may be dissipated, in particular e.g. a heat sink, such as a heating or cooling reservoir, such as a liquid bath, such as a cooling water reservoir, or a stream of cooling water, respectively a temperature reservoir, in particular one with temperature control. The contact, respectively the connections of the heat conducting facility to the first location, such as an article to be cooled, and the contact, respectively the connection to the heat sink, should be developed in a well heat conducting manner.
Preferably, the facility comprises at least one second current conductor protruding from the housing, and at least a second heat conducting facility being in heat flow communication with the second current conductor, and that is developed such to be suitable to conduct thermal energy from the second current conductor. By means of the second heat conducting facility, via the second current conductor, a still better, respectively more efficient heat conduction can be achieved from the interior of the housing of the facility via both current conductors, and thus from both electrodes being arranged in the interior of the housing, and being connected to said current conductors.
Preferably, the first current conductor protrudes from the first housing surface of the housing, and the second current conductor protrudes from a second housing surface of the housing, wherein the second housing surface is opposed to the first housing surface. This arrangement, respectively geometry, allows for a direct arrangement in series of the facility, in particular a serial connection of facilities, wherein for adjoining facilities, respectively, a second current conductor of the one first facility is connected to the first current conductor of an adjoining second facility via a short electric connection, respectively preferably also via a direct electrically conducting contact of the first with the second current conductor.
Preferably, for the first heat conducting facility, respectively the second heat conducting facility, the heat flow communication is effected by connecting said facilities in a positive and/or non-positive manner to the first, respectively second current conductor, respectively. The positive and/or non-positive connection between the heat conducting facility and the current conductor decreases the losses of heat transportation, in other words improves the heat transfer from the current conductor to the heat conducting facility.
In the connection of a heat conducting facility to a current conductor for the generation of the heat flow communication, it is ensured that the connection is electrically isolating such to conduct heat energy, respectively heat flow, however essentially no current, from the current conductor via the heat conducting facility. For this purpose, an electrically isolating layer, respectively foil, may be provided between the heat conducting facility and the current conductor
Preferably, at least the portion of the first current conductor protruding from the housing has an elongated form. In the heat flow communication, the elongated form allows for a large transfer area, and thus a good heat transfer, respectively a low heat transport resistance.
Furthermore, preferably, the portion of the current conductor protruding from the housing, is in thermal heat flow communication along the long dimension of the current conductor with the electrode of the facility, which is in electric connection to the current conductor. Thereby, also a good heat flow, respectively a low heat flow resistance, is possible with respect to the heat transfer from the interior of the facility from the electrode via the current conductor and the heat conducting facility to the external connection.
The housing of the facility may be cylindrical ranging from an elongated cylindrical form, such as a rod-like form, up to the form of a disc, such as in particular a thin disc. Thereby, on the one hand, the facility may have the form of known cylindrical rechargeable accumulators as well as the form of a disc of so-called button cells.
Alternatively, the housing may also have a cuboid-shaped form, in particular a cuboid having a low height. Then, the facility has a plate-like form.
The embodiments having a cylindrical or cuboid-shaped housing having a low overall height up to a very low overall height allows for a compact mounting of the facility operating according to galvanic principles into a device to be supplied with electricity, in particular e.g. close, respectively parallel, to an outer housing wall of the device to be supplied with electricity.
Preferably, the housing essentially has a cuboid-shaped form, and the portion of the first current conductor protruding from the housing extends in parallel to the longest edge of the housing to a first housing surface being defined by the longest edge and a shortest edge of the first housing surface bordering the housing, and one portion of the second current conductor protruding from the housing extends to a second housing surface opposing the first housing surface. Thus, on the one hand, the longest possible area, respectively the passage area for the heat flow between the current conductor and the heat conducting facility to be mounted onto said current conductor, and on the other hand, also the greatest possible contact area for the heat flow communication between the current conductor and the electrode being arranged within the interior of the housing and being connected to said current conductor, allow for an optimal heat transfer from the interior of the housing to the heat conducting facility.
The first current conductor may be connected to a cathode of the facility, and the second current conductor may be connected to an anode of the facility. Thus, the current conductor, additionally to the conductance of electricity, also fulfils another object of the heat conductance from the interior of the housing. The first current conductor may form a negative terminal of the facility, and the second current conductor may form a positive terminal of the facility.
The housing essentially may have a cuboid-shaped form having two largest housing surfaces opposing each other, which are then termed as upper and lower housing surface, and two second largest housing surfaces opposing each other, and which are then termed as first and second lateral surfaces, and which share one edge from the group of the longest edges of the housing with the upper and the lower housing surface, respectively. Preferably, thereby, the distance between the upper and the lower housing surface is not greater than 30%, further preferred not greater than 20% and still further preferred not greater than 10% of the length of one of the longest edges. In this manner, the facility has a flat design, which allows for a compact mounting within a device to be supplied with current, for example parallel to a housing wall of the device. Furthermore, such a flat cuboid-shaped construction of the facility allows for a good stackability for several facilities, which are arranged side by side, in front of each other, and/or one upon the other.
Preferably, in this construction, the first current conductor protrudes from one of the two lateral surfaces, and the second current conductor protrudes from one of the other two lateral surfaces of the housing opposing the first lateral surface, and extends in parallel to one of the longest edges of the housing. Thus, an optimal heat transfer and current transfer from the electrodes via the first respectively second current conductor to the heat transfer facilities are achieved that are in heat flow communication with the current conductors.
Alternatively to this, the housing may further have two smallest housing surfaces being opposed to each other, which are then termed as first and second end surfaces, and the first current conductor may protrude from one of the two end surfaces, and the second current conductor may protrude from the other one of the two end surfaces. Such a construction of the facility allows for a compact stackability of facilities one upon the other, and side by side, wherein the electric connection of the current conductors and the access to the heat conducting facilities being in heat flow communication with the current conductors, may be provided at the end surfaces of the facility.
Preferably, the first heat conducting facility has an elongated form having a longitudinal direction, wherein it essentially completely covers the first current conductor, and protrudes in the longitudinal direction at least in one direction over the extension of the current conductor in its longitudinal direction. Thus, a good heat transfer, respectively heat flow communication, via a large passage area is possible.
At least two or more of such facilities may be electrically connected to each other for the increase of a total capacity, and may be mechanically compactedly arranged towards each other in proximity. In this respect, further aspects of the invention relate to the following.
In another aspect of the invention, a flat basis module of a device operating according to galvanic principles is provided. The flat basis module comprises a first facility operating according to galvanic principles comprising a first housing having an essentially cuboid-shaped form, a first current conductor protruding from a first lateral surface or first end surface, and a second current conductor protruding from a second lateral surface or second end surface of the housing opposing the first lateral surface or first end surface, as well as a second facility operating according to galvanic principles comprising a second housing having an essentially cuboid-shaped form, a first current conductor protruding from a first lateral surface or first end surface of the housing, and a second current conductor protruding from a second lateral surface or end surface of the housing opposing the first lateral surface or end surface. The first and second facilities are arranged such that the housing of the first device shares a plane with the housing of the second facility such that the housing surface of the first facility from which the second current conductor of the first facility protrudes faces the housing surface of the second facility from which the first current conductor of the second facility protrudes. Thus, the second current conductor of the first facility may be connected to the first current conductor of the second facility in a short path, preferably in electric contact. According to the invention, the flat basis module comprises also a heat conducting facility, which is connected in heat flow communication to the second current conductor of the first facility, or to the first current conductor of the second facility for conducting thermal energy. The assembly of the flat basis module of the first and second facility provides a duplication of capacity. By means of the assembly of both housings in a shared plane, a flat construction of the flat basis module and therefore a compact mounting into a device to be supplied with electricity via the flat basis module as well as a good stackability of two or several flat basis modules to a stack of two or more flat basis modules is possible.
Preferably, the second facility is essentially identical in construction to the first facility. Such a modular assembly allows for extensions to devices having a greater capacity, which is also supported by the flat construction and the stackability of the flat basis module.
Preferably, the second current conductor of the first facility and the first current conductor of the second facility are connected to each other in a laminar manner, preferably in a positive manner and/or non-positive manner, in particular in electric contact. Such an electric connection allows for a low contact resistance for the transfer from one to the other current conductor such as in a serial connection of the first and second facility.
Preferably, the heat conducting facility is connected in a positive manner and/or non-positive manner to the second current conductor of the first facility and/or with the first current conductor of the second facility. Thus, low losses in heat transport, respectively a good heat flow conductivity from the one or the two current conductors to the heat conducting facility is achieved.
The first current conductor of the first facility may be connected to a cathode of the first facility, and the second current conductor of the second facility may be connected to an anode of the second facility. Thus, a serial connection of the first and the second facility is achieved. The first current conductor of the first facility may form a negative terminal of the flat basis module, and the second current conductor of the second facility may form a positive terminal of the flat basis module.
According to another aspect of the present invention, a device is provided operating according to galvanic principles. The device comprises a first flat basis module as described above and a second flat module also as described above. The second flat basis module is arranged above the first flat basis module, wherein the first current conductor of the first facility of the second flat basis module is arranged above the first current conductor of the first facility of the first flat basis module, and the second current conductor of the second facility of the second flat basis module is arranged above the second current conductor of the second facility of the first flat basis module. Such a device allows for a further duplication of the capacity, and allows for an electric connection in parallel of the first and second flat basis module having short electric connection paths between the respective current conductors, and thus having a low electrical resistance in the electrical connection.
This device may be developed such that by making an electric connection via a suitable electric connecting system between the first current conductor of the first facility of the second flat basis module and the first current conductor of the first facility of the first flat basis module as well as an electric connection via a suitable electric connecting system between the second current conductor of the second facility of the flat basis module and the second current conductor of the second facility of the first flat basis module, a parallel connection of the flat basis modules may be formed.
The second current conductor of the second facility of the second flat basis module may be connected to the second current conductor of the second facility of the first flat basis module by means of an electric connecting system. Thereby, a parallel connection between the first and the second flat basis module is achieved.
The device may also comprise at least one further flat basis module or a multitude of further flat basis modules as described above, wherein the flat basis modules are arranged one upon the other such that for adjoining flat basis modules, respectively, the first current conductor of the first facility of the upper flat basis module is arranged above the first current conductor of the first facility of the flat basis module, which is adjoinedly arranged below, and the second current conductor of the second device of the upper flat basis module is arranged above the second current conductor of the second facility of the flat basis module, which is adjoinedly arranged below. In this manner, a nearly arbitrarily extendable stackability having a parallel connection of flat basis modules and a respective increase of the total capacity of the device is achieved.
Preferably, the first current conductor of the first facility of a respective flat basis module is connected to the first current conductor of the first facility of a respective adjoining flat basis module by means of an electric connecting system. Similarly, preferably, the second current conductor of the second facility of a respective flat basis module is connected to the second current conductor of the second facility of a respective adjoining flat basis module by means of an electric connecting system. In this manner, a parallel connection of the flat basis modules is formed, and electric connections having short paths are facilitated.
According to a further aspect of the present invention, a device is provided operating according to galvanic principles, and which comprises the following: A first flat basis module as described above, and a second flat basis module as also described above. The second flat basis module is arranged above the first flat basis module, wherein the first current conductor of the first facility of the second flat basis module is arranged above the second current conductor of the second facility of the first flat basis module, and the second current conductor of the second facility of the second flat basis module is arranged above the first current conductor of the first facility of the first flat basis module. In this manner, the possibility of a serial connection of the two flat basis modules having short electric connection paths, and thus a low electric resistance in an electric interconnection is facilitated.
Preferably, the device is developed such that by providing an electric connection by means of a suitable electric connecting system between the second current conductor of the second facility of the first flat basis module and the first current conductor of the first facility of the second flat basis module, a serial connection of the flat basis modules may be formed.
Preferably, the second current conductor of the second facility of the first flat basis module is connected to the first current conductor of the first facility of the second flat basis module by means of an electrically conductible connecting system. Thereby, a serial connection of the flat basis modules is formed.
The device may comprise at least one further flat basis module, or a multitude of further flat basis modules as described above. Thereby, the flat basis modules are arranged one upon the other such that for a respective flat basis module the first current conductor of the first facility of the respective flat basis module is arranged below the second current conductor of the second facility of the flat basis module, which is adjoinedly arranged above, and the second current conductor of the second facility of the respective flat basis module is arranged below the first current conductor of the first facility of the flat basis module, which is adjoinedly arranged above.
Preferably, the first current conductor of the first facility of a respective medium flat basis module is connected to the second current conductor of the second facility of a flat basis module, which is adjoinedly arranged below by means of an electric connecting system, and the second current conductor of the second facility of a respective flat basis module is connected to the first current conductor of the first facility of a flat basis module, which is adjoinedly arranged above by means of an electric connecting system. Thus, a serial connection of the flat basis modules is formed.
A device according to the invention according to the previously mentioned aspect of the invention regarding the serial connection of flat basis modules, and a device according to the invention according to the previously mentioned aspect of the invention regarding the parallel connection of flat basis modules, may be performed such that adjoining flat basis modules are stacked one upon the other, respectively, in particular having an interposed, preferably thin, preferably electrically isolating and still further preferred vibration-reducing, flexible foil and/or layer, or also in direct housing contact of housings, which are arranged one upon the other, and which are arranged side by side. Thus, a mechanically compact assembly of the flat basis modules is achieved.
Preferably, the respective current conductors being arranged one upon the other are connected to each other in an electrically conductible manner by means of at least one rigid electric connecting system. Alternatively, the respective current conductors being arranged one upon the other are connected to each other in an electrically conductible manner by means of at least one flexible electric connecting system.
Preferably, in a device comprising the described mechanical assembly, in each pair of adjoining current conductors, which are connected each by means of an electric connecting system, at least one current conductor and/or at both current conductors a heat conducting facility is connected to the respective current conductors in heat flow communication. It is further preferred that with each current conductor a heat conducting facility is connected to the current conductor in heat flow communication. In this manner, the heat can be conducted still more effective from the interior of the facilities being connected to each other from the respective adjoining flat basis modules, which are stacked one upon the other.
Preferably, a respective heat conducting facility has an elongated form having a longitudinal direction, which essentially completely covers the respective current conductor, and which protrudes in the longitudinal direction at least in one direction over the extension of the current conductor in the longitudinal direction thereof. Preferably, the heat conducting facility extends in its longitudinal direction over the extension of the housing surface from which the respective current conductor protrudes. In this manner, even in case of a mechanical mounting, respectively stacking of the flat basis modules that are arranged one upon the other, or which are adjoining to each other, the protruding ends of the heat conducting facilities are easily accessible, respectively connectable to a receiving facility for thermal energy, as described below.
The devices according to the aforementioned aspects of the invention may comprise two or more stacks of flat basis modules, which are arranged one upon the other.
According to another aspect of the present invention, yet another device operating according to galvanic principles is provided. This device comprises a first facility as described above, and a second facility as also described above. The second facility is arranged above the first facility, wherein the first current conductor of the second facility is arranged above the first current conductor of the first facility, and the second current conductor of the second facility is arranged above the second current conductor of the first facility. In this manner, the first and second facility may be easily electrically connected in parallel, and may be mechanically compactedly arranged one upon the other.
Preferably, the device is developed such that by means of making a first electric connection by means of a suitable, first electric connecting system between the first current conductor of the second facility, and the first current conductor of the first facility as well as a second electric connection by means of a suitable, second electric connecting system between the second current conductor of the second facility and the second current conductor of the first facility, a parallel connection of the facilities is formed.
The device may comprise at least one further facility or a multitude of further facilities as described above, wherein the facilities are arranged one upon the other such that the respective first current conductors of the facilities and the respective second current conductors of the facilities are arranged one upon the other, respectively.
Preferably, pairs of the first current conductors of the respective facilities are connected to each other in an electrically conductible manner by means of an electric connecting system, respectively, and the second current conductors of the facilities are connected to each other in an electrically conductible manner by means of an electric connecting system, respectively. Thereby, a parallel connection of the facilities is formed.
According to a still further aspect of the invention, a device is provided operating according to galvanic principles and which comprises the following: A first facility as described above and a second facility as described above, wherein the second facility is arranged above the first facility, and wherein the first current conductor of the second facility is arranged above the second current conductor of the first facility, and the second current conductor of the second facility is arranged above the first current conductor of the first facility.
The device can be developed such that by making an electric connection by means of a suitable electric connecting system between the first current conductor of the second facility and the second current conductor of the first facility, a serial connection of the facilities may be formed.
The device may comprise at least one further facility or a plurality of further facilities as described above, wherein the facilities are arranged one upon the other such that the first current conductor, which is arranged above a respective facility of an adjoining facility, is arranged above a respective second current conductor of the respective facility.
Preferably, in the device, the first current conductor of a facility, which is adjoinedly arranged above the respective facility, is connected to a respective second current conductor of the respective facility by means of an electric connecting system such that a serial connection of the facilities, which are arranged one upon the other, is formed.
The devices according to the aforementioned both aspects may have two or more stacks of facilities, which are stacked one upon the other.
In the devices disclosed above according to the different aspects of the invention, the stacks of flat basis modules, respectively facilities may be arranged side by side in a linear, bi-linear or multi-linear arrangement.
In these devices, at least two or more linear, bi-linear or multi-linear arrangements may be arranged side by side and/or one upon the other.
In the stacking, respectively the arrangement of stacks side by side, between the facilities being arranged one upon the other, respectively side by side, respectively, one or more, in particular thin, preferably electrically isolating, preferably vibration-reducing, preferably flexible, foil or layer may be arranged.
The device disclosed above, the flat basis module disclosed above, and the devices disclosed above according to the different aspects of the present invention may further comprise a receiving facility for thermal energy. The receiving facility is coupled in heat flow communication to one or more heat conducting facilities for receiving thermal energy, which has been dissipated from the one or the several heat conducting facilities. The receiving facilities for thermal energy may, if suitably constructed, improve the heat dissipation from the interior of the facility, respectively the facilities, which are connected to each other.
The conducting facility may be suitably tempered and, preferably, may be cooled. Thereby, a heat sink is formed, which receives the heat flow that is conducted from the facilities via the current conductors and the heat conducting facilities, and thus still better reduces a temperature increase during operation of the facilities.
Further preferred embodiments can be taken from the attached drawings. Herein show:
The second current conductor 16 and the second heat conducting facility 26 are structurally developed in a comparable manner with the first current conductor 14 and the first heat conducting facility 24, only that the diameter of the cylindrical segments of the second current conductor 16 and the second heat conducting facility are greater than the respective diameters of the cylindrical segments of the first current conductor 14 and the first heat conducting facility 24, as shown in
An essentially cylindrical cathode and an essentially cylindrical anode are arranged in a nested manner within the interior of the essentially cylindrical housing 12 such that the cathode is connected to the cylindrical segment of the first current conductor 14, which extends into the interior of the housing 12, in an electrically conductible manner, and that the anode is connected to the cylindrical segment of the second current conductor 16, which extends into the interior of the housing 12, in an electrically conductible manner. Thus, the connections between the first, respectively the second current conductor 14, 16 and the cathode (not shown), respectively the anode (not shown), exhibit an in essential circular sectional area, which provides a nearly maximal sectional area for the conduction of current from the cathode, respectively the anode, to the respective connected current conductors.
In an alternative of the first embodiment that is shown in
In the embodiment of
In an alternative of the embodiment shown in
The alternative shown in
The embodiment shown in
In the embodiments shown in
With regard to the embodiments shown in
Consequently, in the flat basis module 100, the first facility 110 and the second facility 120 are connected to each other in an electrical serial connection, respectively in a connection in series. The first current conductor 114 of the first facility 110 and the second current conductor 117 of the second facility 120 protrude at opposing (second largest) lateral surfaces of the housing 112, respectively housing 113 of the first, respectively second facility 110, respectively 120, and are accessible from the exterior for the electrical contacting also when one, two or more flat basis modules are stacked one upon the other.
Alternatively to a direct electrical contact, the second current conductor 116 of the first facility 110 and the first current conductor 115 of the second facility 120 may be arranged spaced from each other, wherein by means of a suitable electric connecting system an electric conductibility is generated between these two current conductors.
Furthermore, the flat basis module comprises at least a heat conducting facility 124. This facility, as shown in
As shown in
End sections of the one or several heat conducting facilities 114 protrude (in the view of the
In order to allow for an optimal heat dissipation, in each flat basis module of the device 200, a heat conducting facility 114 is connected in heat flow communication on the first current conductor 114 of the first facility and/or on the second current conductor 117 of the second facility 120, respectively, in particular connected in a positive and non-positive manner.
A third and any number of further flat basis modules may be arranged above the first and second basis flat module 101 and 102 of the device 300 shown in
Similar to the device 200 from
Finally,
Due to their elongated form, the heat conducting facilities 24, 26, 124 shown in the
Between the flat basis modules being stacked one upon the other of the devices 200 and 300 shown in
The heat conducting fingers are laterally led through the facility 20, 110, 120, respectively the flat basis module 100, 101, 102, respectively the devices 200, 300, 400, 500, and are connected by means of a suitable connection technique to a conducting facility for thermal energy, in particular to a heat sink. Said conducting facility, in particular a heat sink, takes up the heat flow by means of a suitable tempering, which has been transferred from the facilities operating according to galvanic principles, in particular galvanic cells, via the current conductor to the heat conducting finger, and removes said heat from the direct region of the facilities, respectively galvanic cells.
The further interconnection of individual facilities as shown in
All features disclosed in the application submissions are claimed as being essential for the invention, provided they are individually or in combination novel over the prior art.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 032 263.6 | Jul 2008 | DE | national |