The present invention relates to a fastener driver, and more particularly, to an electric fastener driver.
A compressed air type fastener driver such as a nail gun has been known. Compressed air generated by a compressor is used as a power source for the fastener driver. However, the use of a compressor is a prerequisite for compressed air type fastener drivers. Therefore, when operating a fastener driver while moving the driver from the ground floor to the first floor of a building, the compressor needs to be moved along with the fastener driver. In other words, such a combination lacks mobility. Additionally, a space needs to be provided for placing the compressor. However, sites of fastener driver operation do not always have a flat area for placing a compressor. In other words, sites of operation are limited for fastener driver that require the use of a compressor.
Electric fastener drivers adapted to drive a solenoid coil as main drive source, using electric power as motive power, are known that are less subject to limitations in terms of sites of operation and mobility. However, since the electric efficiency of solenoid coils is rather poor and between 5 and 20%, fastener drivers adapted to use a solenoid coil are inevitably heavy and bulky when the required drive power is large. More specifically, a fastener driver using a solenoid coil is about three times as heavy as a compressed air type fastener driver having a same output power. Then, to hold such a fastener driver by hand for a long time in order to drive nails has been difficult.
In an attempt to improve the electric efficiency of electric fastener drivers using a solenoid, a fastener driver using a flywheel has been proposed in laid open Japanese Patent Application Kokai Nos. H8-197455 and H6-278051. The flywheel is driven by electric power to drive a fastener exploiting the rotary kinetic energy accumulated in the flywheel.
For a fastener driver using a flywheel to drive a nail with reduced reaction force, the kinetic energy accumulated in the flywheel is necessarily be transmitted to the driver mechanism as motive power within the time to be spent for driving the nail (tens of several milliseconds). A fastener driver as described in Japanese Patent Application Kokai Nos. H8-197455 has a mechanism including a flywheel, a solenoid, a plurality of cams, a clutch and a ball.
The ball is accommodated in the groove of a ball inner pan and that of a ball outer pan and is nipped between the ball inner pan and the ball outer pan. The grooves have a varying depth and the ball moves in the groove relative to the ball inner pan and the ball outer pan as the ball outer pan is turned relative to the ball inner pan. When the ball is held in a shallow part of the grooves, the ball inner pan and the ball outer pan are relatively remote from each other, to render the clutch on. When, on the other hand, the ball is held in a deep part of the grooves, the ball inner pan and the ball outer pan are relatively close to each other, to render the clutch off.
The electric fastener driver adapted to drive a nail, exploiting the kinetic energy of such a flywheel shows an excellent electric efficiency between 50 and 70% and the nail driving energy can be boosted by raising the number of revolutions per unit time of the flywheel. Thus, such an electric fastener driver can be made to be only one and a half times heavier than a compressed air type fastener driver having the same output power.
However, in the known improved electric fastener driver, the clutch is turned on and off as the balls move in the grooves and the ball does no move uniformly in the grooves. In other words, to turn on and off the clutch precisely at a given rotary position of the ball outer pan relative to the ball inner pan has been difficult.
In view of the above-described problem in the conventional fastener driver, it is an object of the present invention to provide an electric fastener driver in which a clutch is turned on and off precisely at a given rotary position.
This and other object of the present invention will be attained by an electric fastener driver including a housing, a motor, a magazine, a flywheel, a driven rotor, a driver segment, a coil spring, a clutch mechanism including a solenoid, and a ratchet mechanism. The housing has a fastener driving position. The motor is disposed in the housing. The magazine is attached to the housing for supplying a fastener to the fastener driving position. The flywheel is rotatably supported to the housing and is driven by the motor. The driven rotor is rotatably supported to the housing. The driver segment is driven by the driven rotor. The coil spring is capable of transmitting rotation of the flywheel to the driven rotor. The clutch mechanism selectively couples the flywheel to the driven rotor through the coil spring. The solenoid has a plunger movable between ON position and OFF position. The ratchet mechanism has a forcible shut off arrangement that forcibly moves the plunger to the OFF position for forcibly shutting off power connection between the flywheel and the driven rotor when the driven rotor is rotated by a predetermined rotation angle after the flywheel and the driven rotor are connected to each other while the solenoid is turned ON.
In the drawings;
a) through 6(c) are views for description of the ratchet mechanism including the first projecting section and a second projecting section of the ratchet mechanism, and in which
a) illustrates the state of two projecting parts when a plunger is ON and the clutch is also ON;
b) illustrates the state of two projecting sections when the second projecting section starts riding on the first projecting section;
c) illustrates the state of two projecting sections when the second projecting section fully rides on the first projecting section;
a) is a front view illustrating an urging section of the fastener driver of
b) is a side view illustrating the urging section of the fastener driver of
A fastener driver according to one embodiment of the present invention will be described with reference to
A motor 8 and a driver segment 18 are arranged in the housing 2. The driver segment 18 is guided by a rail (not shown) in the housing 2 and is held movable between the front end side and the rear end side of the housing 2, that is, between the right end side and the left end side in
A damper section 2D is disposed in the housing 2 at an open end of the channel 6a where the channel 6a is exposed to the internal space of the housing 2. The damper section 2D includes a plate-shaped member 2E with which the driver segment 18 collides when driving a nail, and a damper 2F for absorbing the impact of the collision of the driver segment 18 and the plate-shaped member 2E. A through-hole is formed in the plate-shaped member 2E to allow the blade 18B to pass therethrough and to extend into the channel 6a.
The handle 3 extends from the left lower end surface of the housing 2 so as to be gripped by hand as shown in
The channel 6a is formed from a position located at the side of the housing 2 to the front end of the nose 6 so as to allow the blade 18B to extend therethrough. A push lever 6A is provided at the front end of the channel 6a in such a way that the fastener driver 1 can drive a nail only when the push lever 6A is brought into contact with an object of nail driving and is pushed back by the latter.
The magazine 7 extends from the nose 6 to a position near the battery 4. The magazine 7 contains a plurality of nails in the form of a nail bundle (not shown) and supplies a nail into the channel 6a at a time. As the driver segment 18 is driven to move toward the front end side, the nail held in the channel 6a of the nose 6 is driven by the blade 18B into the workpiece(not shown).
Next, a mechanism for transmitting the power output of the motor 8 to the driver segment 18 in the housing 2 will be described below in detail. As shown in
As shown in
The driven rotor 12 has a substantially hollow cylindrical shape and the axis of the driven rotor 12 runs in parallel with the axis of the rotary shaft 8A of the motor 8. The driven rotor 12 is also rotatably supported by the third wall 2C by way of the bearing 12A. Thus, the driven rotor 12 is not movable in the axial direction and is stably rotatable even if abruptly subjected to external force, because the shaft 12 is supported by the housing 2 at two positions, i.e., at the position of the bearing 17C and position of the bearing 12A.
While a gap is seen between the bearing 12A that is shown below the driven rotor 12 and the third wall 2C in
A pinion gear 12C is provided on an outer periphery of the driven rotor 12 at a position defined between the bearing 12A and the bearing 17A. The pinion gear 12C is meshedly engaged with the rack 18A (
A hole 12b, which is a through-hole for keeping the inside and the outside of the driven rotor 12 in communication with each other, is formed through the driven rotor 12 at a position located close to the pinion gear 12C and remote from the solenoid 13. The driver segment return spring 19 is positioned in the inside of the driven rotor 12 along the inner peripheral surface of the latter. One end of the driver segment return spring 19 is secured to the driven rotor 12 as the one end of the spring 19 is held in the hole 12b, while another end of the driver segment return spring 19 is secured to the third wall 2C as the other end of the spring 19 is held in the groove 2a formed in the third wall 2C.
The driver segment return spring 19 is wound about the axis of the driven rotor 12 in the inside of the driven rotor 12 when the driver segment 18 moves from the rear end side toward the front end side as will be described later. Therefore, after the driver segment 18 moves to the frontward stroke end for driving a nail, driver segment 18 is urged to move back toward the rear end side by a biasing force of the wound driver segment return spring 19 that tends to unwound itself. As a result, the return spring 19 prevents the driver segment 18 from remaining at the front end side after driving a nail.
As shown in
As shown in
The solenoid 13 is positioned at one side of the driven rotor 12. As shown in
A third wall hollow cylindrical section 2G is rigidly secured to the third wall 2C so as to coaxially surround the plunger 14 extending through the through-hole 2c. A base end of the third wall hollow cylindrical section 2G is located close to the through-hole 2c. The third wall hollow cylindrical section 2G extends as far as the internal space of the driven rotor 12 and, as viewed in a radial direction of the driven rotor 12, the plunger 14 is located at the center, or the axis, of the driven rotor 12. That is, the third wall hollow cylindrical section 2G is located coaxially and radially outwardly relative to the plunger 14. Then, the driven rotor 12 is located coaxially and radially outwardly relative to the third wall hollow cylindrical section 2G.
The plunger 14 is adapted to move leftward in
A transmission switch section 14B, which is part of the ratchet mechanism, is provided at the front end of the plunger 14 to cover the latter. The transmission switch section 14B has a hollow cylindrical shape with one end closed and another end provided with a flange part. The inner diameter of the transmission switch section 14B is approximately equal to the outer diameter of the plunger 14. Thus, in the sate where the plunger 14 is positioned in the transmission switch section 14B, the transmission switch section 14B and the plunger 14 are movable together in the axial direction of the driven rotor 12. Further, the transmission switch section 14B is coaxially and rotatably supported by the plunger 14.
As a matter of convenience, the position of the plunger 14 when the solenoid 13 is energized to become ON will be referred to as ON position, whereas the position of the plunger 14 when the solenoid 13 is de-energized to become OFF will be referred to as OFF position hereinafter.
A second projecting section 14C that is part of the ratchet mechanism is provided at the flange part of the transmission switch section 14B. The second projecting section 14C projects in the direction from the OFF position toward the ON position of the plunger 14, or in the direction from the right side toward the left side in
An annular abutting member 14E is disposed around a part of the transmission switch section 14B at a position close to one end thereof as shown in
Additionally, the large diameter section (flange part) of the annular abutting member 14E abuts a small diameter section (not shown) of the inner peripheral surface of the third wall hollow cylindrical section 2G, and is rigidly secured in a given position by a retaining ring 2H so as to be immovable in the axial direction thereof relative to the third wall hollow cylindrical section 2G. The inner peripheral surface of the annular abutting member 14E abuts the outer peripheral surface of the transmission switch section 14B. Thus, the transmission switch section 14B is rotatable relative to the annular abutting member 14E.
The first projecting section 14G serving as a part of the ratchet mechanism is provided at one end (right side in
In the OFF state of the solenoid 13 when the solenoid 13 is not energized, the second projecting section 14C is spaced away from the first projecting section 14G as shown in
Thus, as a result, the transmission switch section 14B and the plunger 14 are forcibly retracted to the OFF position, so that the linkage between the flywheel 9 and the driven rotor 12 is forcibly cancelled. The rotary position of about ¾ of a full turn of the driven rotor 12 is the position where the driver segment 18 moves toward the front end side and drives a nail, and the front end of the driver segment 18 collides with the plate-shaped member 2E of the damper section 2D.
A linear projecting section 14I is provided at an end of the transmission switch section 14B. The linear projecting section 14I projects in the axial direction of the transmission switch section 14B, and extends in a radial direction of the transmission switch section 14B by a length equal to the diameter of the transmission switch section 14B, The linear projecting section 14I is engaged with a linear recessed section 14a formed at an end of an urging section 15 described below.
The urging section 15 is positioned at a position facing the end of the transmission switch section 14B. The urging section 15 has a substantially cylindrical reduced-diameter section at an end thereof and an increased-diameter section at the other end thereof that is connected to and coaxial with the reduced-diameter section. The linear recessed section 14a is formed in the reduced-diameter section and is recessed in the direction from the OFF position toward the ON position of the plunger 14. The liner recessed section 14a is engaged with the linear projecting section 14I of the transmission switch section 14B. With this arrangement, the rotary position of the transmission switch section 14B can be accurately defined, and integral rotation of the transmission switch section 14B and the urging section 15 can be performed. The increased-diameter section shows a hollow cylindrical profile, and an axial position recessed section 14b that is recessed in the direction toward the reduced-diameter section is formed at the increased-diameter section at a position connected to the reduced-diameter section and corresponding to the axis of the urging section 15.
As shown in
A gap 15a is defined among the inclined surface 15A, deepest section 15B and inner peripheral surface of the driven rotor 12 for defining an internal space. The deepest section 15B is so formed that the sum of the wall thickness near the hole 12a of the driven rotor 12 and the distance of the gap between the surface of the deepest section 15B and the inner peripheral surface of the driven rotor 12 that defines the internal space is substantially equal to the diameter of the ball 16. The clutch mechanism is constituted by the urging section 15, the ball 16, the solenoid 13 and the ratchet mechanism. The ball 16 is partly and constantly retained in the hole 12a so that the movement of the plunger 14 in its axial direction and the movement of the driven rotor 12 in its circumferential direction are restricted, whereas movement of the driven rotor 12 in its radial direction can be permitted.
To be more specific, the ball 16 is held in contact with the surface of the deepest section 15B in the condition where the plunger 14 is at the OFF position and contracted and the ball 16 would not project radially outwardly from the hole 12a beyond the outer peripheral surface of the driven rotor 12. In the condition where the plunger 14 is at the ON position and extended, the ball is held in contact with the inclined surface 15A and partly projects beyond the outer peripheral surface of the driven rotor 12 as shown in
The ball 16 may project out of the hole 12a due to the gravity depending on the inclination of the main body of the fastener driver 1. However, no urging force is exerted to the clutch ring 17 by the ball 16, since the ball 16 is not supported by the inclined surface 15A. As a result, the coil spring 11 (described later) will not be restrained by the clutch ring 17.
A solenoid return spring 14A that is a compression spring is disposed in the inside of the driven rotor 12. The solenoid return spring 14A has one end engaged with the axial position recessed section 14b of the urging section 15, and has another end held in contact with spring seat section 12B that defines the inner stepped surface of an internal sleeve member 12F described later disposed within the driven rotor 12. Thus, the solenoid return spring 14A constantly urges the urging section 15 and the transmission switch section 14B in the direction toward the solenoid 13.
The driven rotor 12 has in the inside thereof the internal sleeve member 12F. A support section 12G radially inwardly extends from the inner peripheral surface of the driven rotor 12 for supporting the internal sleeve member 12F. The internal sleeve member 12F is fixedly secured to and coaxially with the driven rotor 12 by the support section 12G at a position closer to the flywheel 9 than to the hole 12a of the driven rotor 12. The internal sleeve member 12F is rotatable together with the driven rotor 12.
The spring seat section 12B that is a stepped section is defined by part of the inner peripheral surface of the internal sleeve member 12F as shown in
As described above, the driven rotor 12 is rotatably supported relative to the second wall 2B and the third wall 3C. Thus, the flywheel 9 is freely rotatable relative to the driven rotor 12 and to the housing 2, since the flywheel 9 is rotatably supported on the support shaft 12D of the internal sleeve member 12F, which is part of the driven rotor 12, by way of the bearing 9A.
A teeth section is arranged on the outer periphery of the flywheel 9 and is meshedly engaged with the gear 8B of the motor 8. Thus, as the gear 8B is driven to rotate, the flywheel 9 rotates clockwise in
A one way clutch 9D having a substantially cylindrical outer profile is disposed between the inner peripheral surface of the reduced diameter section 10A and the outer peripheral surface of the internal sleeve member 12F. The one-way clutch 9D is disposed coaxially with both the reduced diameter section 10A and the internal sleeve member 12F. The one-way clutch 9D is force-fitted with the inner peripheral surface of the reduced diameter section 10A, so that the one-way clutch 9D is unrotatable relative to the reduced diameter section 10A. Thus, the one way clutch 9D surrounds the internal sleeve member 12F, and the reduced diameter section 10A surrounds the one way clutch 9D.
The one way clutch 9D includes a casing 9E having a substantially hollow cylindrical profile, a plurality of cylindrical members 9F arranged in the axial direction of the casing 9E and a plurality of springs (not shown). The cylindrical members 9F are engaged with a groove-shaped recessed section (not shown) formed on the inner peripheral surface of the casing 9E. Each peripheral surface of each cylindrical member 9F project partly from the inner peripheral surface of the casing 9E. The springs (not shown) are arranged in the groove-shaped recessed section and urge the respective cylindrical members 9F to project from the inner peripheral surface of the casing 9E in a slanting direction relative to a radial direction of the cylindrical members 9F.
When the internal sleeve member 12F is urged to be rotated relative to the reduced diameter section 10A in the direction of rotation (clockwise) of the reduced diameter section 10A, the cylindrical members 9F move in the direction to project from the inner peripheral surface of the casing 9E to thus intrude between the cylindrical members 9F and the reduced diameter section 10A. As a result, the driven rotor 12 and the internal sleeve member 12F are brought into linkage to the flywheel 9 and the reduced diameter section 10A. Thus, the driven rotor 12 becomes unrotable relative to the flywheel 9.
On the other hand, when the internal sleeve member 12F is urged to be rotated relative to the reduced diameter section 10A in the opposite direction of rotation (counterclockwise) of the reduced diameter section 10A, the cylindrical members 9F are urged to be moved in the direction to be retained into the groove (not shown). Thus, the intruding condition of the cylindrical members 9F relative to the reduced diameter section 10A is cancelled. Then, as a result, the one way clutch 9D rotatably supports the driven rotor 12 relative to the flywheel 9.
The rotary speed of the driven rotor 12 may become relatively faster than the rotary speed of the flywheel 9 at a timing when the driven rotor 12 is linked to the flywheel 9 by the coil spring 11 of the clutch mechanism. However, the one-way clutch 9D can avoid the occurrence of the difference of rotary speed. Thus, unwinding of the coil spring 11 against the driven rotor 12 can be prevented. In other words, insufficient power transmission to the driven rotor 12 can be eliminated.
The coil spring 11 is coaxially wound over the driving rotary shaft 10. The coil spring 11 has one end 11A fixed to the driving rotary shaft 10. That is, the driving rotary shaft 10 has a projecting section (not shown), and the end 11A is hooked to the projecting section. The coil spring 11 has another end 11B rigidly anchored to the clutch ring 17. That is, the other end 11B is inserted into the hole 17a that is the through-hole formed through the spring holding section 17B of the clutch ring 17.
Since one end 11A of the coil spring 11 is secured to the driving rotary shaft 10, the power transmission and power transmission shut-off between the coil spring 11 and the driven rotor 12 can be performed. Further, the inertial force of the rotary motion of the coil spring 11 that rotates together with the flywheel 9 can be utilized as energy for driving a nail.
The coil spring 11 is formed by winding a steel wire into a cylindrical form. More specifically, as shown in
The inner diameter of the coil spring 11 is substantially equal to or slightly smaller than the outer diameter 10 of the driving rotary shaft 10 when the spring 11 is at its free state. Further, the outer diameter of the driven rotor 12 is smaller than the outer diameter of the driving rotary shaft 10. Therefore, when the solenoid 13 is not energized, the inner diameter of the coil spring 11 is larger than the outer diameter of the driven rotor 12 and a gap is provided between the coil spring 11 and the driven rotor 12 to make the coil spring 11 loose. Thus, the coil spring 11 is not linked to the driven rotor 12.
As the solenoid 13 is energized while the coil spring 11 is connected to the flywheel 9 and rotating together, the ball 16 comes to contact the clutch ring 17. Thus, the diameter of the coil spring 11 is reduced so as to link the flywheel 9 and the driven rotor 12 by way of the coil spring 11, because the rotary speed of the flywheel 9 is greater than that of the driven rotor 12.
When the clutch mechanism is at the power transmission shut-off state, and hence the driver segment 18 is not driven, the inner diameter of the coil spring 11 is larger than the outer diameter of the driven rotor 12. Therefore, the driven rotor 12 is not driven to rotate if the motor 8 is operated in this condition. Thus, the driver segment 18 can be highly accurately controlled. Additionally, frictional wearing and the heat generation due to frictional contact between the coil spring 11 and the driven rotor 12 can be suppressed.
Next, nail driving operation with the fastener driver 1 will be described. Firstly, the operator pulls the trigger 5 and, at the same time, pushes the push lever 6A against the workpiece, or pushes the push lever 6A against the workpiece and subsequently pulls the trigger 5. Then, power is supplied from the battery 4 to the motor 8 and the motor 8 starts rotating the flywheel 9 engaged with the motor, the driving rotary shaft 10 and the coil spring 11.
As the motor 8 starts driving, the angular speed of the flywheel 9 increases to accumulate rotational energy. At this time, the ball 16 is not projecting from the hole 12a and hence does not contact the clutch ring 17. Therefore, as shown in
As a predetermined time passes after the motor 8 starts rotating and the flywheel 9 accumulates energy sufficient for driving the driver segment 18 (necessary for driving a nail or the like), the solenoid 13 is energized to become ON and the plunger 14 extends against the biasing force of the solenoid return spring 14A. At this time, the surface that contacts the urging section 15 of the ball 16 is switched from the surface of the deepest section 15B to the inclined surface 15A. Then, as the plunger 14 extends, the ball 16 is moved outwardly in a radial direction of the driven rotor 12 by the inclined surface 15A and projects from the surface of the driven rotor 12.
As the ball 16 projects from the surface of the driven rotor 12, the ball 16 becomes engaged with the U-shaped section of the clutch ring 17 and abuts the clutch ring 17. Then, the driven rotor 12 and the clutch ring 17 are linked to each other by the ball 16. Since frictional force acts between the ball 16 and the clutch ring 17 at this time, the clutch ring 17 and the driven rotor 12 tend to rotate together so that the rotary speed of the clutch ring 17 and that of the driven rotor 12 become equal to each other. Since the driven rotor 12 starts rotating from a stopped condition, it gives rise to a rotational difference with the flywheel 9.
Then, as a result, the other side 11B of the coil spring 11 is turned in the sense of winding of the coil spring 11 so that the inner diameter of the coil spring 11 is reduced. As the inner diameter of the coil spring 11 keeps on being reduced, the coil spring 11 clinches the driven rotor 12 and hence becomes linked to the latter. Thus, the driven rotor 12 becomes rotating together with the coil spring 11 and the flywheel 9.
The moment when the driven rotor 12 and the flywheel 9 start rotating together, the rotational energy of the flywheel 9 is transmitted to the driven rotor 12 at a time. Then, the rotary speed of the driven rotor 12 momentarily tends to become greater than that of the flywheel 9 and the sense of rotation of the flywheel 9 tends to become opposite to that of the driven rotor 12. However, the rotary speed of the driven rotor 12 is prevented from exceeding that of the flywheel 9 by the one way clutch 9D so that the driven rotor 12 and the flywheel 9 immediately start rotating together. Then, the coil sprig 11 clinches the driven rotor 12 so that the condition in which the coil spring 11 is linked to the driven rotor 12 is maintained.
At this time, the urging section 15 and the driven rotor 12 are linked to each other by way of the ball 16. Then, as a result, the urging section 15 rotates together with the driven rotor 12. As the driven rotor 12 rotates, the driver segment 18 having the rack 18A that is held in engagement with the pinion 12C of the driven rotor 12 is driven to move toward the front end side of the housing 2. Since the rotation energy of the flywheel 9 is transmitted to the driven rotor 12, the driven rotor 12 abruptly starts rotating at high speed in the condition where the shaft 12 is linked to the coil spring 11. As the driven rotor 12 abruptly starts rotating at high speed, the driver segment 18 is also abruptly driven to move toward the front end side of the housing 2. Note that, as the solenoid 13 becomes ON, the supply of power to the motor 8 is stopped so that the motor 8 rotates freely.
When the driven rotor 14 comes to a rotary position slightly short of the rotary position of about ¾ of a full turn after starting to rotate and hence the front end of the driver segment 18 becomes immediately before colliding with the plate-shaped member 2E of the damper section 2D, the second projecting section 14C of the ratchet mechanism rides on the first projecting section 14G to retract the transmission switch section 14B and the plunger 14 to the OFF position as shown in
The energization of the solenoid 13 is terminated and the solenoid 13 comes into an OFF state when the operation of driving the nail is completed and the second projecting section 14C of the ratchet mechanism remains riding on the first projecting section 14G. Then, the plunger 14 is held to the OFF position by the biasing force of the solenoid return spring 14A. Since the urging section 15 is also held at the rightmost position in
When the linkage between the driven rotor 12 and the coil spring 11 is cancelled after the end of the nail driving operation, no urging force is applied to the driver segment 18 to urge it toward the front end side. Therefore, the driver segment 18 is driven to move toward the rear end side by the driver segment return spring 19 connected to the driver segment 18 and restores the state prior to driving the nail.
While the invention has been described in detail and with reference to the specific embodiment thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention. For example, while the coil spring 11 is made to constantly rotate together with the flywheel 9 in the above-described embodiment, the fastener driver may alternatively be so arranged that the coil spring is made to constantly rotate together with the driven rotor. In the latter case, connection and disconnection between the coil spring and the flywheel can be made by a clutch mechanism.
Number | Date | Country | Kind |
---|---|---|---|
P2005-314035 | Oct 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5320270 | Crutcher | Jun 1994 | A |
5511715 | Crutcher et al. | Apr 1996 | A |
6607111 | Garvis et al. | Aug 2003 | B2 |
6669072 | Burke et al. | Dec 2003 | B2 |
6755336 | Harper et al. | Jun 2004 | B2 |
6766935 | Pedicini et al. | Jul 2004 | B2 |
6796475 | Adams | Sep 2004 | B2 |
6971567 | Cannaliato et al. | Dec 2005 | B1 |
6974061 | Adams et al. | Dec 2005 | B2 |
7165305 | Kenney et al. | Jan 2007 | B2 |
Number | Date | Country |
---|---|---|
06-278051 | Oct 1994 | JP |
08-197455 | Aug 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20070095876 A1 | May 2007 | US |