The present disclosure relates to medical apparatus, systems, and methods for ablating tissue in a patient. More specifically, the present disclosure relates to medical apparatus, systems, and methods for ablation of tissue by electroporation.
Ablation procedures are used to treat many different conditions in patients. Ablation may be used to treat cardiac arrhythmias, benign tumors, cancerous tumors, and to control bleeding during surgery. Usually, ablation is accomplished through thermal ablation techniques including radio-frequency (RF) ablation and cryoablation. In RF ablation, a probe is inserted into the patient and radio frequency waves are transmitted through the probe to the surrounding tissue. The radio frequency waves generate heat, which destroys surrounding tissue and cauterizes blood vessels. In cryoablation, a hollow needle or cryoprobe is inserted into the patient and cold, thermally conductive fluid is circulated through the probe to freeze and kill the surrounding tissue. RF ablation and cryoablation techniques indiscriminately kill tissue through cell necrosis, which may damage or kill otherwise healthy tissue, such as tissue in the esophagus, phrenic nerve cells, and tissue in the coronary arteries.
Another ablation technique uses electroporation. In electroporation, or electro-permeabilization, an electric field is applied to cells to increase the permeability of the cell membrane. The electroporation may be reversible or irreversible, depending on the strength of the electric field. If the electroporation is reversible, the increased permeability of the cell membrane may be used to introduce chemicals, drugs, and/or deoxyribonucleic acid (DNA) into the cell, prior to the cell healing and recovering. If the electroporation is irreversible, the affected cells are killed through apoptosis.
Irreversible electroporation may be used as a nonthermal ablation technique. In irreversible electroporation, trains of short, high voltage pulses are used to generate electric fields that are strong enough to kill cells through apoptosis. In ablation of cardiac tissue, irreversible electroporation may be a safe and effective alternative to the indiscriminate killing of thermal ablation techniques, such as RF ablation and cryoablation. Irreversible electroporation may be used to kill targeted tissue, such as myocardium tissue, by using an electric field strength and duration that kills the targeted tissue but does not permanently damage other cells or tissue, such as non-targeted myocardium tissue, red blood cells, vascular smooth muscle tissue, endothelium tissue, and nerve cells. But the effectiveness of electroporation depends on exposing targeted tissue to a critical electric field strength, which depends on electrode geometry. This much is true because irreversible electroporation effectiveness depends on cell geometry and/or orientation relative to the generated electric field. And often, electrode geometry is such that an electric field produced by the electrodes has limited (e.g., single) orientations.
In Example 1, an electroporation ablation system for treating target tissue, the electroporation ablation system comprising an ablation catheter and an electroporation generator. The ablation catheter includes a shaft defining a longitudinal axis of the ablation catheter, and an electroporation electrode arrangement at a distal end of the shaft and including a plurality of electrodes arranged so as to define a plurality of anode-cathode pairs each configured to generate an electric field when an electrical pulse sequence is delivered thereto. The plurality of anode-cathode pairs includes a first anode-cathode pair arranged so as to generate a first electric field having a first orientation relative to the longitudinal axis when a first electrical pulse sequence is delivered thereto, and
a second anode-cathode pair arranged so as to generate a second electric field having a second orientation relative to the longitudinal axis when a second electrical pulse sequence is delivered thereto. The electroporation generator is operatively coupled to the electroporation electrode arrangement and configured to selectively generate and deliver the first electrical pulse sequence to first anode-cathode pair, and the second electrical pulse sequence to the second anode-cathode pair.
In Example 2, the electroporation ablation system of Example 1, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is circumferential about the longitudinal axis.
In Example 3, the electroporation ablation system of Example 1, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is transverse to the longitudinal axis.
In Example 4, the electroporation ablation system of Example 1, wherein the first orientation is transverse to the longitudinal axis, and the second orientation is generally circumferential about the longitudinal axis.
In Example 5, the electroporation ablation system of any of Examples 1-4, wherein each of the first and second pulse sequences comprises a plurality of direct current (DC) pulses.
In Example 6, the electroporation ablation system of Example 5, wherein the DC pulses are monophasic pulses, biphasic pulses, or triphasic pulses.
In Example 7, the electroporation ablation system of Example 6, wherein the electroporation generator is configured to generate the DC pulses of each electrical pulse sequence separated by an inter-pulse delay, and wherein at least some of the DC pulses of the second electrical pulse sequence are delivered during a respective inter-pulse delay of the first electrical pulse sequence.
In Example 8, the electroporation system of Example 6, wherein the electroporation generator is configured to generate a plurality of electrical pulse sequence sets having a pause therebetween, wherein each electrical pulse sequence set comprises the first electrical pulse sequence and the second electrical pulse sequence.
In Example 9, the electroporation ablation system of Example 6, wherein DC pulses are biphasic pulses, and the electroporation ablation generator is configured to alternate between delivering the first electrical pulse sequence to the first anode-cathode pair, and the second electrical pulse sequence to the second anode-cathode pair.
In Example 10, the electroporation ablation system of Example 6, wherein each of the DC pulses is a triphasic pulse defined by a first phase having a first phase voltage and a first phase length, a second phase having a second phase voltage and a second phase length, and a third phase having a third phase voltage and a third phase length, wherein the first and third phases have the same polarity and the second phase has an opposite polarity thereto.
In Example 11, the electroporation ablation system of Example 10, wherein the first phase voltage, the first phase length, the second phase voltage, the second phase length, the third phase voltage and the third phase length are selected such that each DC pulse is charge-and-energy balanced.
In Example 12, the electroporation ablation system of Example 11, the first, second and third phase voltages are equal to each other, and wherein the first and third phase lengths are equal to one another and have a duration of one-half of the second phase length.
In Example 13, the electroporation ablation system of Example 11, wherein the first and third phase voltages and phase lengths are equal to each other, and are different from the second phase voltage and the second phase length, respectively.
In Example 14, the electroporation ablation system of Example 10, wherein the first, second and third phase lengths and the first, second and third phase voltages are selected such that each DC pulse is charge imbalanced so as to encourage electrolysis of the target tissue.
In Example 15, the electroporation ablation system of Example 5, wherein each DC pulse of the first electrical pulse sequence has a first voltage and a first pulse length selected to ablate the target tissue by irreversible electroporation, and wherein each DC pulse of the second pulse sequence has a second voltage and a second pulse length selected to create electrolytic byproducts at the target tissue proximate the second anode-cathode pair.
In Example 16, an electroporation ablation system for treating target tissue, the electroporation ablation system comprising an ablation catheter and an electroporation generator. The ablation catheter includes
In Example 17, the electroporation ablation system of Example 16, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is circumferential about the longitudinal axis.
In Example 18, the electroporation ablation system of Example 16, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is transverse to the longitudinal axis.
In Example 19, the electroporation ablation system of Example 16, wherein the first orientation is transverse to the longitudinal axis, and the second orientation is generally circumferential about the longitudinal axis.
In Example 20, the electroporation ablation system of Example 16, wherein each of the plurality of electrical pulse sequences comprises a plurality of direct current (DC) pulses.
In Example 21, the electroporation ablation system of Example 20, wherein the DC pulses are monophasic pulses, biphasic pulses, or triphasic pulses.
In Example 22, the electroporation ablation system of Example 20, wherein the electroporation generator is configured to generate the DC pulses of each pulse sequence separated by an inter-pulse delay, and wherein at least some of the DC pulses of a first electrical pulse sequence are delivered during a respective inter-pulse delay of a second electrical pulse sequence.
In Example 23, the electroporation system of Example 16, wherein the electroporation generator is configured to generate a plurality of electrical pulse sequence sets having a pause therebetween, wherein each electrical pulse sequence set comprises a plurality of electrical pulse sequences.
In Example 24, the electroporation ablation system of Example 20, wherein the electroporation generator is configured to generate the DC pulses of each electrical pulse sequence separated by an inter-pulse delay, and wherein at least some of the DC pulses of the second electrical pulse sequence are delivered during a respective inter-pulse delay of the first electrical pulse sequence.
In Example 25, the electroporation ablation system of Example 20, wherein DC pulses are biphasic pulses, and the electroporation ablation generator is configured to alternate between delivering the first electrical pulse sequence to the first anode-cathode pair, and the second electrical pulse sequence to the second anode-cathode pair.
In Example 26, an electroporation ablation system for treating target tissue, the electroporation ablation system comprising an ablation catheter including a handle, a shaft having a distal end and defining a longitudinal axis of the ablation catheter, and an electroporation electrode arrangement at the distal end of the shaft and including a plurality of electrodes arranged so as to define a plurality of electrode pairs each configured to generate an electric field when an electrical pulse sequence is delivered thereto, the plurality of electrode pairs including a first electrode pair arranged so as to generate a first electric field having a first orientation relative to the longitudinal axis when a first electrical pulse sequence is delivered thereto; and
a second electrode pair arranged so as to generate a second electric field having a second orientation relative to the longitudinal axis when a second electrical pulse sequence is delivered thereto. The electroporation generator is operatively coupled to the electroporation electrode arrangement and configured to selectively generate and deliver the first electrical pulse sequence to first electrode pair, and the second electrical pulse sequence to the second electrode pair.
In Example 27, the electroporation ablation system of Example 26, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is circumferential about the longitudinal axis.
In Example 28, the electroporation ablation system of Example 26, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is transverse to the longitudinal axis.
In Example 29, the electroporation ablation system of Example 26, wherein the first orientation is transverse to the longitudinal axis, and the second orientation is generally circumferential about the longitudinal axis.
In Example 30, the electroporation ablation system of Example 26, wherein the first and second electrical pulse sequences each comprise a plurality of biphasic DC pulses, and the wherein the electroporation ablation generator is configured to alternate between delivering the first electrical pulse sequence to the first electrode pair, and the second electrical pulse sequence to the second electrode pair.
In Example 31, a method of generating and delivering a signal to electrodes in an electroporation ablation system, the method comprising delivering a first electrical pulse sequence to a first electrode pair of an electroporation catheter having a longitudinal axis so as to generate a first electric field having a first orientation relative to the longitudinal axis, and delivering a second electrical pulse sequence to a second electrode pair of the electroporation catheter so as to generate a second electric field having a second orientation relative to the longitudinal axis.
In Example 32, the method of Example 31, wherein delivering the first electrical pulse sequence to the first electrode pair and delivering the second electrical pulse sequence to the second electrode pair includes alternatingly delivering, over a time period, the first electrical pulse sequence to the first electrode pair and delivering the second electrical pulse sequence to the second electrode pair to produce a dynamically gyrating electric field that comprises a changing pattern over the time period.
In Example 33, the method of Example 32, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is circumferential about the longitudinal axis.
In Example 34, the method of Example 32, wherein the first orientation is generally aligned with the longitudinal axis, and wherein the second orientation is transverse to the longitudinal axis.
In Example 35, the method of Example 32, wherein the first orientation is transverse to the longitudinal axis, and the second orientation is generally circumferential about the longitudinal axis.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing exemplary embodiments of the present invention. Examples of constructions, materials, and/or dimensions are provided for selected elements. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.
The electroporation catheter system 60 includes an electroporation catheter 105, an introducer sheath 110, and an electroporation generator 130. Additionally, the electroporation catheter system 60 includes various connecting elements (e.g., cables, umbilicals, and the like) that operate to functionally connect the components of the electroporation catheter system 60 to one another and to the components of the EAM system 70. This arrangement of connecting elements is not of critical importance to the present disclosure, and one skilled in the art will recognize that the various components described herein may be interconnected in a variety of ways.
In embodiments, the electroporation catheter system 60 is configured to deliver electric field energy to targeted tissue in the patient's heart 30 to create tissue apoptosis, rendering the tissue incapable of conducting electrical signals. The electroporation generator 130 is configured to control functional aspects of the electroporation catheter system 60. In embodiments, the electroporation generator 130 is operable as an electroporation pulse generator for generating and supplying pulse sequences to the electroporation catheter 105, as described in greater detail herein
In embodiments, the electroporation generator 130 includes one or more controllers, microprocessors, and/or computers that execute code out of memory to control and/or perform the functional aspects of the electroporation catheter system 60. In embodiments, the memory may be part of the one or more controllers, microprocessors, and/or computers, and/or part of memory capacity accessible through a network, such as the world wide web.
In embodiments, the introducer sheath 110 is operable to provide a delivery conduit through which the electroporation catheter 105 may be deployed to the specific target sites within the patient's heart 30. It will be appreciated, however, that the introducer sheath 110 is illustrated and described herein to provide context to the overall electrophysiology system 50, but it is not critical to the novel aspects of the various embodiments described herein.
The EAM system 70 is operable to track the location of the various functional components of the electroporation catheter system 60, and to generate high-fidelity three-dimensional anatomical and electro-anatomical maps of the cardiac chambers of interest. In embodiments, the EAM system 70 may be the RHYTHMIA™ HDx mapping system marketed by Boston Scientific Corporation. Also, in embodiments, the mapping and navigation controller 90 of the EAM system 70 includes one or more controllers, microprocessors, and/or computers that execute code out of memory to control and/or perform functional aspects of the EAM system 70, where the memory, in embodiments, may be part of the one or more controllers, microprocessors, and/or computers, and/or part of memory capacity accessible through a network, such as the world wide web.
As will be appreciated by the skilled artisan, the depiction of the electrophysiology system 50 shown in
The EAM system 70 generates a localization field, via the field generator 80, to define a localization volume about the heart 30, and one or more location sensors or sensing elements on the tracked device(s), e.g., the electroporation catheter 105, generate an output that may be processed by the mapping and navigation controller 90 to track the location of the sensor, and consequently, the corresponding device, within the localization volume. In the illustrated embodiment, the device tracking is accomplished using magnetic tracking techniques, whereby the field generator 80 is a magnetic field generator that generates a magnetic field defining the localization volume, and the location sensors on the tracked devices are magnetic field sensors.
In other embodiments, impedance tracking methodologies may be employed to track the locations of the various devices. In such embodiments, the localization field is an electric field generated, for example, by an external field generator arrangement, e.g., surface electrodes, by intra-body or intra-cardiac devices, e.g., an intracardiac catheter, or both. In these embodiments, the location sensing elements may constitute electrodes on the tracked devices that generate outputs received and processed by the mapping and navigation controller 90 to track the location of the various location sensing electrodes within the localization volume.
In embodiments, the EAM system 70 is equipped for both magnetic and impedance tracking capabilities. In such embodiments, impedance tracking accuracy can, in some instances, be enhanced by first creating a map of the electric field induced by the electric field generator within the cardiac chamber of interest using a probe equipped with a magnetic location sensor, as is possible using the aforementioned RHYTHMIA HDx™ mapping system. One exemplary probe is the INTELLAMAP ORION™ mapping catheter marketed by Boston Scientific Corporation.
Regardless of the tracking methodology employed, the EAM system 70 utilizes the location information for the various tracked devices, along with cardiac electrical activity acquired by, for example, the electroporation catheter 105 or another catheter or probe equipped with sensing electrodes, to generate, and display via the display 92, detailed three-dimensional geometric anatomical maps or representations of the cardiac chambers as well as electro-anatomical maps in which cardiac electrical activity of interest is superimposed on the geometric anatomical maps. Furthermore, the EAM system 70 may generate a graphical representation of the various tracked devices within the geometric anatomical map and/or the electro-anatomical map.
While the EAM system 70 is shown in combination with the electroporation catheter system 60 to provide a comprehensive depiction of an exemplary clinical setting 10, the EAM system 70 is not critical to the operation and functionality of the electroporation catheter system 60. That is, in embodiments, the electroporation catheter system 60 can be employed independently of the EAM system 70 or any comparable electro-anatomical mapping system.
In the illustrated embodiment, the electroporation catheter 105 includes a handle 105a, a shaft 105b, and an electroporation electrode arrangement 150, which is described further hereinafter. The handle 105a is configured to be operated by a user to position the electroporation electrode arrangement 150 at the desired anatomical location. The shaft 105b has a distal end 105c and generally defines a longitudinal axis of the electroporation catheter 105. As shown, the electroporation electrode arrangement 150 is located at or proximate the distal end 105c of the shaft 105b. In embodiments, the electroporation electrode arrangement 150 is electrically coupled to the electroporation generator 130, so as to receive electrical pulse sequences or pulse trains, thereby selectively generating electrical fields for ablating the target tissue by irreversible electroporation.
As described above and also in greater detail elsewhere herein, the electroporation catheter system 60 is operable to generate a multidirectional electric field for ablating target tissue via irreversible electroporation. Such procedures include single-shot ablation procedures, e.g., pulmonary vein isolation (PVI) procedures as well as focal cardiac ablation procedures.
Between
As may be seen in
In embodiments, the electroporation electrode arrangement 150 may be configured so as to structurally arrange the electrodes 201a, 201b, 201c, 201d, 201e, and 201f into a distally-located first region and a more proximally-located second region. As such, electrode pairs may be formed across various electrodes 201 in the electroporation electrode arrangement 150 between first and second regions. For example, the electrodes 201d and 201f may be configured to form an electrode pair. Similarly, the electrodes 201a and 201d or electrodes 201b and 201e or the combination thereof may be selected to form respective electrode pairs. Thus, the electrode pairs may comprise axially spaced electrodes, transversely spaced electrodes, or circumferentially spaced electrodes. Additionally, in embodiments, a given electrode (e.g., 201d) may serve as a common electrode in at least two electrode pairs to generate electric fields 210.
Undesired gaps in electric fields 210 generated by the electroporation electrode arrangement 150 may be limited or at least substantially eliminated. Such gaps may potentially lead to lesion gaps and therefore require multiple repositions of a catheter, for example. Overlapping electric fields 210 may at least substantially limit the number of such gaps. In embodiments, at least some the electric fields 210 generated in the first pulse sequence set may overlap at least partially with each other. For example, adjacent electric fields 210 (e.g., axial, transverse, and/or circumferential) in a combined electric field 211 may intersect one another so that there are limited to no gaps in the combined electric field 211. Overlapping may occur at or near the periphery of adjacent electric fields 210 or may occur over a preponderance or majority of one or more adjacent electric fields 210. In this disclosure, adjacent means neighboring electrodes 201 or electrodes 201 otherwise near each other. The electroporation generator may be configured to generate pulse sequences used in generating overlapping electric fields.
The configuration of the electroporation electrode arrangement 150 in the various embodiments may take on any form, whether now known or later developed, suitable for a three-dimensional electrode structure. In exemplary embodiments, the electroporation electrode arrangement 150 may be in the form of a splined basket catheter, with respective electrodes 201a, 201b, 201c, 201d, 201e, and 201f positioned on a plurality of splines in any manner known in the art. In embodiments, the electroporation electrode arrangement 150 can be formed on an expandable balloon, e.g., with electrodes formed on flexible circuit branches or individual traces disposed on the balloon surface. In other embodiments, the electroporation electrode arrangement 150 may be in the form of an expandable mesh. In short, the particular structure used to form the electroporation electrode arrangement 150 is not critical to the embodiments of the present disclosure.
In the illustrated embodiment, the pulse sequence series 302a and corresponding pulse sequence sets 320a differ from the pulse sequence series 301a and pulse sequence sets 310a in that the electrical pulses 312a, 314a are reversed in polarity.
With further reference to
It will be appreciated that although
With further reference to
In the embodiment of
It is emphasized that the disclosure should not be limited to the orientations shown in
As discussed elsewhere herein, each of the generated pulse sequences delivered to the plurality of anode-cathode pairs may be charge-and-energy balanced, e.g., to prevent buildup of ionic byproducts and electrolysis and to help muscle stimulation. Although depicted and discussed with a certain number, orientation, or arrangement of pulse sequences, pulse sequence sets, or pulse sequence series, this disclosure should not be limited to such, as one skilled in the art would appreciate. As well, it is appreciated that pulse sequences may contain identical or different pulses and pulse sequence sets may contain identical or different pulse sequences.
Referring to
In embodiments, triphasic pulse sequences 305e, 305f may be delivered in a variety of forms while remaining charge-and-energy balanced. For example, boundary conditions may be established for each pulse and may include parameters for voltage amplitude and/or for pulse length. When the pulse sequences 305e, 305f delivered to the plurality of anode-cathode pairs comprise one or more triphasic pulses, each triphasic pulse may have a first voltage amplitude and a second voltage amplitude, the first voltage amplitude being greater than or equal to the second voltage amplitude. And each triphasic pulse may have a first voltage pulse length and a second voltage pulse length, the first voltage pulse length being less than or equal to the second voltage pulse length. The illustrated triphasic pulses have asymmetric voltage amplitudes (v) and varied pulse lengths such that d1 is less than d2 and are therefore charge-and-energy balanced while having a higher voltage amplitude than symmetric triphasic pulses (such as those shown in
In various embodiments, it may be advantageous to generate and selectively deliver to target tissue electrical pulse sequences that are not charge-balanced so as to promote electrolysis within the target tissue. Generally speaking, relatively short, high voltage electrical pulses are effective in causing reversible or irreversible electroporation in myocardial cells. In contrast, relatively long, low voltage electrical pulses can promote the formation of electrolytic byproducts in the myocardial tissue proximate the electrodes. These electrolytic byproducts can tend to diffuse outward along the electric field gradients and into the pores created in the cells via electroporation, thus causing, or at least encouraging, cell death due to an electrolytic imbalance within the cells. This technique can cause cell death in both irreversibly and reversibly electroporated cells. The present disclosure thus contemplates interlacing electrical pulses configured for causing irreversible electroporation with pulses configured for promoting the aforementioned electrolysis to enhance the likelihood of successfully ablating the target tissue.
A similar effect can be achieved by employing the quad-phasic electrical pulse 311i illustrated schematically in
The electroporation generator may be configured to perform a feedback loop to loop the electroporation ablation system through a plurality of pulse sequences 305. In embodiments, the feedback loop may be automatic and/or may follow a programmed pattern. In either case, changes in orientation of the electric field may be continuous or intermittent. The feedback loop may be performed based on a target metric, such as electrogram amplitude reduction, impedance change, or another similar metric. When a target metric is achieved, for example, the electroporation generator may apply a generated pulse sequence across a different electrode pair than was previously used. As an example, the feedback loop may generate an axially oriented electric field followed by a transversely oriented electric field. It is appreciated that a feedback loop may also employ a mix of multidirectional and unidirectional electric fields in any order, and so this concept is not beyond the scope of this disclosure. Methods of this disclosure may make use of these concepts and of those described in relation to other embodiments disclosed herein.
Generating a pulse sequence set can include generating a plurality of pulse sequence sets. At step 404, a first generated pulse sequence set may be generated, and at step 408, a second generated pulse sequence set that is different from the first generated pulse sequence set. For example, the first generated pulse set can be similar to those disclosed elsewhere herein, such as those with an axial orientation. And the second generated pulse set can be similar to those disclosed elsewhere herein, such as those with a circumferential orientation. In embodiments, generating the generated pulse sequence set may include alternatingly generating, over a time period, at least two of the first pulse sequence, the second pulse sequence, and the third pulse sequence to produce a dynamically gyrating electric field that comprises a changing pattern over the time period.
The gyrating electric field may be achieved via a feedback loop, such as those disclosed elsewhere herein. For example, at step 412, it may be determined whether to use a feedback loop. If so, the method 400 may loop back to a previous step such as step 404 to generate a first generated pulse sense set. And if no feedback loop is used at step 412, the method 400 may end.
In embodiments, delivering the generated pulse sequence set to the ablation catheter may employ sets of electrode pairs or depend on characteristic of the patient. For example, at step 408 a first generated pulse sequence may be applied across a first set of axially spaced electrodes, transversely spaced electrodes, or circumferentially spaced electrodes to produce a correspondingly oriented electric field. And at step 410 a second generated pulse sequence may be applied across whichever of the first set of axially spaced electrodes, transversely spaced electrodes, or circumferentially spaced electrodes that were not used in the first generated pulse sequence. In embodiments, the first and second generated pulse sequences may share at least one common electrode to which the first and second generated pulse sequences are applied. In embodiments, alternating waveforms may be delivered at different stages of the cardiac cycle (e.g., using local EGM sensing).
Various modifications and additions may be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application claims priority to Provisional Application No. 63/056,017, filed Jul. 24, 2020, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4200104 | Harris | Apr 1980 | A |
4470407 | Hussein | Sep 1984 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
5234004 | Hascoet et al. | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5257635 | Langberg | Nov 1993 | A |
5281213 | Milder et al. | Jan 1994 | A |
5304214 | Deford et al. | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5398683 | Edwards et al. | Mar 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5454370 | Avitall | Oct 1995 | A |
5515848 | Corbett et al. | May 1996 | A |
5531685 | Hemmer et al. | Jul 1996 | A |
5545161 | Imran | Aug 1996 | A |
5578040 | Smith | Nov 1996 | A |
5617854 | Munsif | Apr 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5667491 | Pliquett et al. | Sep 1997 | A |
5672170 | Cho et al. | Sep 1997 | A |
5700243 | Narciso, Jr. | Dec 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5722400 | Ockuly et al. | Mar 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5749914 | Janssen | May 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5788692 | Campbell et al. | Aug 1998 | A |
5810762 | Hofmann | Sep 1998 | A |
5833710 | Jacobson | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5836942 | Netherly et al. | Nov 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5843154 | Osypka | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5863291 | Schaer | Jan 1999 | A |
5868736 | Swanson et al. | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5876336 | Swanson et al. | Mar 1999 | A |
5885278 | Fleischman | Mar 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5899917 | Edwards et al. | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5916158 | Webster, Jr. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5928269 | Alt | Jul 1999 | A |
5928270 | Ramsey, III | Jul 1999 | A |
5938660 | Swartz et al. | Aug 1999 | A |
6002955 | Willems et al. | Dec 1999 | A |
6006131 | Cooper et al. | Dec 1999 | A |
6009351 | Flachman | Dec 1999 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6033403 | Tu et al. | Mar 2000 | A |
6035238 | Ingle et al. | Mar 2000 | A |
6045550 | Simpson et al. | Apr 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6071274 | Thompson et al. | Jun 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6076012 | Swanson et al. | Jun 2000 | A |
6090104 | Webster, Jr. | Jul 2000 | A |
6096036 | Bowe et al. | Aug 2000 | A |
6113595 | Muntermann | Sep 2000 | A |
6119041 | Pomeranz et al. | Sep 2000 | A |
6120500 | Bednarek et al. | Sep 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6146381 | Bowe et al. | Nov 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6167291 | Barajas et al. | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6216034 | Hofmann et al. | Apr 2001 | B1 |
6219582 | Hofstad et al. | Apr 2001 | B1 |
6223085 | Dann et al. | Apr 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6251107 | Schaer | Jun 2001 | B1 |
6251109 | Hassett et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6272384 | Simon et al. | Aug 2001 | B1 |
6287306 | Kroll et al. | Sep 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6350263 | Wetzig et al. | Feb 2002 | B1 |
6370412 | Armoundas et al. | Apr 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6447505 | Mcgovern et al. | Sep 2002 | B2 |
6464699 | Swanson | Oct 2002 | B1 |
6470211 | Ideker et al. | Oct 2002 | B1 |
6502576 | Lesh | Jan 2003 | B1 |
6503247 | Swartz et al. | Jan 2003 | B2 |
6517534 | Mcgovern et al. | Feb 2003 | B1 |
6527724 | Fenici | Mar 2003 | B1 |
6527767 | Wang et al. | Mar 2003 | B2 |
6592581 | Bowe | Jul 2003 | B2 |
6595991 | Toellner et al. | Jul 2003 | B2 |
6607520 | Keane | Aug 2003 | B2 |
6613046 | Jenkins et al. | Sep 2003 | B1 |
6623480 | Kuo et al. | Sep 2003 | B1 |
6638278 | Falwell et al. | Oct 2003 | B2 |
6666863 | Wentzel et al. | Dec 2003 | B2 |
6669693 | Friedman | Dec 2003 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6719756 | Muntermann | Apr 2004 | B1 |
6723092 | Brown et al. | Apr 2004 | B2 |
6728563 | Rashidi | Apr 2004 | B2 |
6743225 | Sanchez et al. | Jun 2004 | B2 |
6743226 | Cosman et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6764486 | Natale | Jul 2004 | B2 |
6780181 | Kroll et al. | Aug 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6807447 | Griffin, III | Oct 2004 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6893438 | Hall et al. | May 2005 | B2 |
6926714 | Sra | Aug 2005 | B1 |
6955173 | Lesh | Oct 2005 | B2 |
6960206 | Keane | Nov 2005 | B2 |
6960207 | Vanney et al. | Nov 2005 | B2 |
6972016 | Hill et al. | Dec 2005 | B2 |
6973339 | Govari | Dec 2005 | B2 |
6979331 | Hintringer et al. | Dec 2005 | B2 |
6984232 | Vanney et al. | Jan 2006 | B2 |
6985776 | Kane et al. | Jan 2006 | B2 |
7001383 | Keidar | Feb 2006 | B2 |
7041095 | Wang et al. | May 2006 | B2 |
7113831 | Hooven | Sep 2006 | B2 |
7171263 | Darvish et al. | Jan 2007 | B2 |
7182725 | Bonan et al. | Feb 2007 | B2 |
7195628 | Falkenberg | Mar 2007 | B2 |
7207988 | Leckrone et al. | Apr 2007 | B2 |
7207989 | Pike et al. | Apr 2007 | B2 |
7229402 | Diaz et al. | Jun 2007 | B2 |
7229437 | Johnson et al. | Jun 2007 | B2 |
7250049 | Roop et al. | Jul 2007 | B2 |
7285116 | De et al. | Oct 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7326208 | Vanney et al. | Feb 2008 | B2 |
7346379 | Eng et al. | Mar 2008 | B2 |
7367974 | Haemmerich et al. | May 2008 | B2 |
7374567 | Heuser | May 2008 | B2 |
7387629 | Vanney et al. | Jun 2008 | B2 |
7387630 | Mest | Jun 2008 | B2 |
7387636 | Cohn et al. | Jun 2008 | B2 |
7416552 | Paul et al. | Aug 2008 | B2 |
7419477 | Simpson et al. | Sep 2008 | B2 |
7419489 | Vanney et al. | Sep 2008 | B2 |
7422591 | Phan | Sep 2008 | B2 |
7429261 | Kunis et al. | Sep 2008 | B2 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7513896 | Orszulak | Apr 2009 | B2 |
7527625 | Knight et al. | May 2009 | B2 |
7578816 | Boveja et al. | Aug 2009 | B2 |
7588567 | Boveja et al. | Sep 2009 | B2 |
7623899 | Worley et al. | Nov 2009 | B2 |
7678108 | Chrisitian et al. | Mar 2010 | B2 |
7681579 | Schwartz | Mar 2010 | B2 |
7771421 | Stewart et al. | Aug 2010 | B2 |
7805182 | Weese et al. | Sep 2010 | B2 |
7842031 | Abboud et al. | Nov 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7857808 | Oral et al. | Dec 2010 | B2 |
7857809 | Drysen | Dec 2010 | B2 |
7869865 | Govari et al. | Jan 2011 | B2 |
7896873 | Hiller et al. | Mar 2011 | B2 |
7917211 | Zacouto | Mar 2011 | B2 |
7918819 | Karmarkar et al. | Apr 2011 | B2 |
7918850 | Govari et al. | Apr 2011 | B2 |
7922714 | Stevens-Wright | Apr 2011 | B2 |
7955827 | Rubinsky et al. | Jun 2011 | B2 |
8048067 | Davalos et al. | Nov 2011 | B2 |
8048072 | Verin et al. | Nov 2011 | B2 |
8100895 | Panos et al. | Jan 2012 | B2 |
8100900 | Prinz et al. | Jan 2012 | B2 |
8108069 | Stahler et al. | Jan 2012 | B2 |
8133220 | Lee et al. | Mar 2012 | B2 |
8137342 | Crossman | Mar 2012 | B2 |
8145289 | Calabro'et al. | Mar 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8160690 | Wilfley et al. | Apr 2012 | B2 |
8175680 | Panescu | May 2012 | B2 |
8182477 | Orszulak et al. | May 2012 | B2 |
8206384 | Falwell et al. | Jun 2012 | B2 |
8206385 | Stangenes et al. | Jun 2012 | B2 |
8216221 | Ibrahim et al. | Jul 2012 | B2 |
8221411 | Francischelli et al. | Jul 2012 | B2 |
8226648 | Paul et al. | Jul 2012 | B2 |
8228065 | Wirtz et al. | Jul 2012 | B2 |
8235986 | Kulesa et al. | Aug 2012 | B2 |
8235988 | Davis et al. | Aug 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8282631 | Davalos et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8414508 | Thapliyal et al. | Apr 2013 | B2 |
8430875 | Ibrahim et al. | Apr 2013 | B2 |
8433394 | Harlev et al. | Apr 2013 | B2 |
8449535 | Deno et al. | May 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8463368 | Harlev et al. | Jun 2013 | B2 |
8475450 | Govari et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8500733 | Watson | Aug 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8538501 | Venkatachalam et al. | Sep 2013 | B2 |
8562588 | Hobbs et al. | Oct 2013 | B2 |
8568406 | Harlev et al. | Oct 2013 | B2 |
8568410 | Vakharia et al. | Oct 2013 | B2 |
8571635 | Mcgee | Oct 2013 | B2 |
8571647 | Harlev et al. | Oct 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8585695 | Shih | Nov 2013 | B2 |
8588885 | Hall et al. | Nov 2013 | B2 |
8597288 | Christian | Dec 2013 | B2 |
8608735 | Govari et al. | Dec 2013 | B2 |
8628522 | Ibrahim et al. | Jan 2014 | B2 |
8632534 | Pearson et al. | Jan 2014 | B2 |
8647338 | Chornenky et al. | Feb 2014 | B2 |
8708952 | Cohen et al. | Apr 2014 | B2 |
8734442 | Cao et al. | May 2014 | B2 |
8771267 | Kunis et al. | Jul 2014 | B2 |
8795310 | Fung et al. | Aug 2014 | B2 |
8808273 | Caples et al. | Aug 2014 | B2 |
8808281 | Emmons et al. | Aug 2014 | B2 |
8834461 | Werneth et al. | Sep 2014 | B2 |
8834464 | Stewart et al. | Sep 2014 | B2 |
8868169 | Narayan et al. | Oct 2014 | B2 |
8876817 | Avitall et al. | Nov 2014 | B2 |
8880195 | Azure | Nov 2014 | B2 |
8886309 | Luther et al. | Nov 2014 | B2 |
8903488 | Callas et al. | Dec 2014 | B2 |
8920411 | Gelbart et al. | Dec 2014 | B2 |
8926589 | Govari | Jan 2015 | B2 |
8932287 | Gelbart et al. | Jan 2015 | B2 |
8945117 | Bencini | Feb 2015 | B2 |
8979841 | Kunis et al. | Mar 2015 | B2 |
8986278 | Fung et al. | Mar 2015 | B2 |
8996091 | De et al. | Mar 2015 | B2 |
9002442 | Harley et al. | Apr 2015 | B2 |
9005189 | Davalos et al. | Apr 2015 | B2 |
9005194 | Oral et al. | Apr 2015 | B2 |
9011425 | Fischer et al. | Apr 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9055959 | Vaska et al. | Jun 2015 | B2 |
9072518 | Swanson | Jul 2015 | B2 |
9078667 | Besser et al. | Jul 2015 | B2 |
9101374 | Hoch et al. | Aug 2015 | B1 |
9113911 | Sherman | Aug 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9119634 | Gelbart et al. | Sep 2015 | B2 |
9131897 | Harada et al. | Sep 2015 | B2 |
9155590 | Mathur | Oct 2015 | B2 |
9162037 | Belson et al. | Oct 2015 | B2 |
9179972 | Olson | Nov 2015 | B2 |
9186481 | Avitall et al. | Nov 2015 | B2 |
9192769 | Donofrio et al. | Nov 2015 | B2 |
9204916 | Lalonde | Dec 2015 | B2 |
9211405 | Mahapatra et al. | Dec 2015 | B2 |
9216055 | Spence et al. | Dec 2015 | B2 |
9233248 | Luther et al. | Jan 2016 | B2 |
9237926 | Nollert et al. | Jan 2016 | B2 |
9262252 | Kirkpatrick et al. | Feb 2016 | B2 |
9277957 | Long et al. | Mar 2016 | B2 |
9282910 | Narayan et al. | Mar 2016 | B2 |
9289258 | Cohen | Mar 2016 | B2 |
9289606 | Paul et al. | Mar 2016 | B2 |
9295516 | Pearson et al. | Mar 2016 | B2 |
9301801 | Scheib | Apr 2016 | B2 |
9351789 | Novichenok et al. | May 2016 | B2 |
9375268 | Long | Jun 2016 | B2 |
9387031 | Stewart et al. | Jul 2016 | B2 |
9414881 | Callas et al. | Aug 2016 | B2 |
9468495 | Kunis et al. | Oct 2016 | B2 |
9474486 | Eliason et al. | Oct 2016 | B2 |
9474574 | Ibrahim et al. | Oct 2016 | B2 |
9480525 | Lopes et al. | Nov 2016 | B2 |
9486272 | Bonyak et al. | Nov 2016 | B2 |
9486273 | Lopes et al. | Nov 2016 | B2 |
9492227 | Lopes et al. | Nov 2016 | B2 |
9492228 | Lopes et al. | Nov 2016 | B2 |
9510888 | Jean-Pierre | Dec 2016 | B2 |
9517103 | Panescu et al. | Dec 2016 | B2 |
9526573 | Lopes et al. | Dec 2016 | B2 |
9532831 | Reinders et al. | Jan 2017 | B2 |
9539010 | Gagner et al. | Jan 2017 | B2 |
9554848 | Stewart et al. | Jan 2017 | B2 |
9554851 | Sklar et al. | Jan 2017 | B2 |
9700368 | Callas et al. | Jul 2017 | B2 |
9724170 | Mickelsen | Aug 2017 | B2 |
9757193 | Zarins et al. | Sep 2017 | B2 |
9782099 | Williams et al. | Oct 2017 | B2 |
9795442 | Salahieh et al. | Oct 2017 | B2 |
9801681 | Laske et al. | Oct 2017 | B2 |
9808304 | Lalonde | Nov 2017 | B2 |
9861802 | Mickelsen | Jan 2018 | B2 |
9913685 | Clark et al. | Mar 2018 | B2 |
9931487 | Quinn et al. | Apr 2018 | B2 |
9987081 | Bowers et al. | Jun 2018 | B1 |
9999465 | Long et al. | Jun 2018 | B2 |
10010368 | Laske et al. | Jul 2018 | B2 |
10016232 | Bowers et al. | Jul 2018 | B1 |
10130423 | Viswanathan | Nov 2018 | B1 |
10172673 | Viswanathan et al. | Jan 2019 | B2 |
10194818 | Williams et al. | Feb 2019 | B2 |
10285755 | Stewart et al. | May 2019 | B2 |
10322286 | Viswanathan et al. | Jun 2019 | B2 |
10433906 | Mickelsen | Oct 2019 | B2 |
10433908 | Viswanathan et al. | Oct 2019 | B2 |
10512505 | Raju | Dec 2019 | B2 |
10512779 | Viswanathan et al. | Dec 2019 | B2 |
10517672 | Long | Dec 2019 | B2 |
10617467 | Viswanathan et al. | Apr 2020 | B2 |
10660702 | Viswanathan et al. | May 2020 | B2 |
20010000791 | Suorsa et al. | May 2001 | A1 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20010044624 | Seraj et al. | Nov 2001 | A1 |
20020022839 | Stewart et al. | Feb 2002 | A1 |
20020052602 | Wang et al. | May 2002 | A1 |
20020058933 | Christopherson et al. | May 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020091384 | Hooven et al. | Jul 2002 | A1 |
20020095176 | Prestel | Jul 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161323 | Miller et al. | Oct 2002 | A1 |
20020169445 | Jain et al. | Nov 2002 | A1 |
20020177765 | Bowe et al. | Nov 2002 | A1 |
20020183638 | Swanson | Dec 2002 | A1 |
20030014098 | Quijano et al. | Jan 2003 | A1 |
20030018374 | Paulos | Jan 2003 | A1 |
20030023287 | Edwards et al. | Jan 2003 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030050637 | Maguire et al. | Mar 2003 | A1 |
20030060856 | Chornenky et al. | Mar 2003 | A1 |
20030114849 | Ryan | Jun 2003 | A1 |
20030125729 | Hooven et al. | Jul 2003 | A1 |
20030130598 | Manning et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030204161 | Ferek-Petric | Oct 2003 | A1 |
20030229379 | Maynard | Dec 2003 | A1 |
20040039382 | Kroll et al. | Feb 2004 | A1 |
20040049181 | Stewart et al. | Mar 2004 | A1 |
20040049182 | Koblish et al. | Mar 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087939 | Eggers et al. | May 2004 | A1 |
20040111087 | Stern et al. | Jun 2004 | A1 |
20040199157 | Palanker et al. | Oct 2004 | A1 |
20040231683 | Eng et al. | Nov 2004 | A1 |
20040236360 | Cohn et al. | Nov 2004 | A1 |
20040254607 | Wittenberger et al. | Dec 2004 | A1 |
20040267337 | Hayzelden | Dec 2004 | A1 |
20050033282 | Hooven | Feb 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050222632 | Obino | Oct 2005 | A1 |
20050251130 | Boveja et al. | Nov 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20060009755 | Sra | Jan 2006 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060015095 | Desinger et al. | Jan 2006 | A1 |
20060015165 | Bertolero et al. | Jan 2006 | A1 |
20060024359 | Walker et al. | Feb 2006 | A1 |
20060058781 | Long | Mar 2006 | A1 |
20060111702 | Oral et al. | May 2006 | A1 |
20060142801 | Demarais et al. | Jun 2006 | A1 |
20060167448 | Kozel | Jul 2006 | A1 |
20060217703 | Chornenky et al. | Sep 2006 | A1 |
20060241734 | Marshall et al. | Oct 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060270900 | Chin et al. | Nov 2006 | A1 |
20060287648 | Schwartz | Dec 2006 | A1 |
20060293730 | Rubinsky et al. | Dec 2006 | A1 |
20060293731 | Rubinsky et al. | Dec 2006 | A1 |
20070005053 | Dando | Jan 2007 | A1 |
20070021744 | Creighton | Jan 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070066972 | Ormsby et al. | Mar 2007 | A1 |
20070129721 | Phan et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070156135 | Rubinsky et al. | Jul 2007 | A1 |
20070167740 | Grunewald et al. | Jul 2007 | A1 |
20070167940 | Stevens-Wright | Jul 2007 | A1 |
20070173878 | Heuser | Jul 2007 | A1 |
20070208329 | Ward et al. | Sep 2007 | A1 |
20070225589 | Viswanathan | Sep 2007 | A1 |
20070249923 | Keenan | Oct 2007 | A1 |
20070260223 | Scheibe et al. | Nov 2007 | A1 |
20070270792 | Hennemann et al. | Nov 2007 | A1 |
20080009855 | Hamou | Jan 2008 | A1 |
20080033426 | Machell | Feb 2008 | A1 |
20080065061 | Viswanathan | Mar 2008 | A1 |
20080086120 | Mirza et al. | Apr 2008 | A1 |
20080091195 | Sliwa et al. | Apr 2008 | A1 |
20080103545 | Bolea et al. | May 2008 | A1 |
20080132885 | Rubinsky et al. | Jun 2008 | A1 |
20080161789 | Thao et al. | Jul 2008 | A1 |
20080172048 | Martin et al. | Jul 2008 | A1 |
20080200913 | Viswanathan | Aug 2008 | A1 |
20080208118 | Goldman | Aug 2008 | A1 |
20080243214 | Koblish | Oct 2008 | A1 |
20080281322 | Sherman et al. | Nov 2008 | A1 |
20080300574 | Belson et al. | Dec 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090024084 | Khosla et al. | Jan 2009 | A1 |
20090048591 | Ibrahim et al. | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090076496 | Azure | Mar 2009 | A1 |
20090076500 | Azure | Mar 2009 | A1 |
20090105654 | Kurth et al. | Apr 2009 | A1 |
20090138009 | Viswanathan et al. | May 2009 | A1 |
20090149917 | Whitehurst et al. | Jun 2009 | A1 |
20090163905 | Winkler et al. | Jun 2009 | A1 |
20090228003 | Sinelnikov | Sep 2009 | A1 |
20090240248 | Deford et al. | Sep 2009 | A1 |
20090275827 | Aiken et al. | Nov 2009 | A1 |
20090281477 | Mikus et al. | Nov 2009 | A1 |
20090306651 | Schneider | Dec 2009 | A1 |
20100004623 | Hamilton et al. | Jan 2010 | A1 |
20100023004 | Francischelli et al. | Jan 2010 | A1 |
20100137861 | Soroff et al. | Jun 2010 | A1 |
20100185140 | Kassab et al. | Jul 2010 | A1 |
20100185186 | Longoria | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100191232 | Boveda | Jul 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100261994 | Davalos et al. | Oct 2010 | A1 |
20100274238 | Klimovitch | Oct 2010 | A1 |
20100280513 | Juergen et al. | Nov 2010 | A1 |
20100280539 | Miyoshi et al. | Nov 2010 | A1 |
20100292687 | Kauphusman et al. | Nov 2010 | A1 |
20100312096 | Guttman et al. | Dec 2010 | A1 |
20100312300 | Ryu et al. | Dec 2010 | A1 |
20110028962 | Werneth et al. | Feb 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110040199 | Hopenfeld | Feb 2011 | A1 |
20110098694 | Long | Apr 2011 | A1 |
20110106221 | Neal et al. | May 2011 | A1 |
20110130708 | Perry et al. | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110144633 | Govari | Jun 2011 | A1 |
20110160785 | Mori et al. | Jun 2011 | A1 |
20110190659 | Long et al. | Aug 2011 | A1 |
20110190727 | Edmunds et al. | Aug 2011 | A1 |
20110213231 | Hall et al. | Sep 2011 | A1 |
20110276047 | Sklar et al. | Nov 2011 | A1 |
20110276075 | Fung et al. | Nov 2011 | A1 |
20110288544 | Verin et al. | Nov 2011 | A1 |
20110288547 | Morgan et al. | Nov 2011 | A1 |
20110313417 | De et al. | Dec 2011 | A1 |
20120029512 | Willard et al. | Feb 2012 | A1 |
20120046570 | Mllegas et al. | Feb 2012 | A1 |
20120053581 | Wittkampf et al. | Mar 2012 | A1 |
20120059255 | Paul et al. | Mar 2012 | A1 |
20120071872 | Rubinsky et al. | Mar 2012 | A1 |
20120078320 | Schotzko et al. | Mar 2012 | A1 |
20120078343 | Fish | Mar 2012 | A1 |
20120089089 | Swain et al. | Apr 2012 | A1 |
20120095459 | Callas et al. | Apr 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120165667 | Altmann et al. | Jun 2012 | A1 |
20120172859 | Condie et al. | Jul 2012 | A1 |
20120172867 | Ryu et al. | Jul 2012 | A1 |
20120197100 | Razavi et al. | Aug 2012 | A1 |
20120209260 | Lambert et al. | Aug 2012 | A1 |
20120220998 | Long et al. | Aug 2012 | A1 |
20120265198 | Crow et al. | Oct 2012 | A1 |
20120283582 | Mahapatra et al. | Nov 2012 | A1 |
20120303019 | Zhao et al. | Nov 2012 | A1 |
20120310052 | Mahapatra et al. | Dec 2012 | A1 |
20120310230 | Willis | Dec 2012 | A1 |
20120310237 | Swanson | Dec 2012 | A1 |
20120316557 | Sartor et al. | Dec 2012 | A1 |
20130030430 | Stewart et al. | Jan 2013 | A1 |
20130060247 | Sklar et al. | Mar 2013 | A1 |
20130060248 | Sklar et al. | Mar 2013 | A1 |
20130079768 | De et al. | Mar 2013 | A1 |
20130090651 | Smith | Apr 2013 | A1 |
20130096655 | Moffitt et al. | Apr 2013 | A1 |
20130103027 | Sklar et al. | Apr 2013 | A1 |
20130103064 | Arenson et al. | Apr 2013 | A1 |
20130131662 | Wittkampf | May 2013 | A1 |
20130158538 | Govari | Jun 2013 | A1 |
20130158621 | Ding et al. | Jun 2013 | A1 |
20130172715 | Just et al. | Jul 2013 | A1 |
20130172864 | Ibrahim et al. | Jul 2013 | A1 |
20130172875 | Govari et al. | Jul 2013 | A1 |
20130184702 | Neal et al. | Jul 2013 | A1 |
20130218157 | Callas et al. | Aug 2013 | A1 |
20130226174 | Brahim et al. | Aug 2013 | A1 |
20130237984 | Sklar | Sep 2013 | A1 |
20130253415 | Sano et al. | Sep 2013 | A1 |
20130296679 | Condie et al. | Nov 2013 | A1 |
20130310829 | Cohen | Nov 2013 | A1 |
20130317385 | Sklar et al. | Nov 2013 | A1 |
20130331831 | Werneth et al. | Dec 2013 | A1 |
20130338467 | Grasse et al. | Dec 2013 | A1 |
20140005664 | Govari et al. | Jan 2014 | A1 |
20140024911 | Harlev et al. | Jan 2014 | A1 |
20140039288 | Hue-Teh | Feb 2014 | A1 |
20140051993 | Mcgee | Feb 2014 | A1 |
20140052118 | Laske et al. | Feb 2014 | A1 |
20140052126 | Long et al. | Feb 2014 | A1 |
20140052216 | Long et al. | Feb 2014 | A1 |
20140058377 | Deem et al. | Feb 2014 | A1 |
20140081113 | Cohen et al. | Mar 2014 | A1 |
20140100563 | Govari et al. | Apr 2014 | A1 |
20140107644 | Falwell et al. | Apr 2014 | A1 |
20140142408 | De et al. | May 2014 | A1 |
20140148804 | Ward et al. | May 2014 | A1 |
20140163480 | Govari et al. | Jun 2014 | A1 |
20140163546 | Govari et al. | Jun 2014 | A1 |
20140171942 | Werneth et al. | Jun 2014 | A1 |
20140180035 | Anderson | Jun 2014 | A1 |
20140187916 | Clark et al. | Jul 2014 | A1 |
20140194716 | Diep et al. | Jul 2014 | A1 |
20140194867 | Fish et al. | Jul 2014 | A1 |
20140200567 | Cox et al. | Jul 2014 | A1 |
20140235986 | Harlev et al. | Aug 2014 | A1 |
20140235988 | Ghosh | Aug 2014 | A1 |
20140235989 | Wodlinger et al. | Aug 2014 | A1 |
20140243851 | Cohen et al. | Aug 2014 | A1 |
20140253140 | Gilbert | Sep 2014 | A1 |
20140276760 | Bonyak et al. | Sep 2014 | A1 |
20140276782 | Paskar | Sep 2014 | A1 |
20140276791 | Ku et al. | Sep 2014 | A1 |
20140288556 | Ibrahim et al. | Sep 2014 | A1 |
20140303721 | Fung et al. | Oct 2014 | A1 |
20140343549 | Spear et al. | Nov 2014 | A1 |
20140364845 | Rashidi | Dec 2014 | A1 |
20140371613 | Narayan et al. | Dec 2014 | A1 |
20150005767 | Werneth et al. | Jan 2015 | A1 |
20150011995 | Avitall et al. | Jan 2015 | A1 |
20150066108 | Shi et al. | Mar 2015 | A1 |
20150119674 | Fischell et al. | Apr 2015 | A1 |
20150126840 | Thakur et al. | May 2015 | A1 |
20150133914 | Koblish | May 2015 | A1 |
20150138977 | Dacosta | May 2015 | A1 |
20150141978 | Subramaniam et al. | May 2015 | A1 |
20150141982 | Lee | May 2015 | A1 |
20150142041 | Kendale et al. | May 2015 | A1 |
20150148796 | Bencini | May 2015 | A1 |
20150150472 | Harlev et al. | Jun 2015 | A1 |
20150157402 | Kunis et al. | Jun 2015 | A1 |
20150157412 | Wallace et al. | Jun 2015 | A1 |
20150164584 | Davalos et al. | Jun 2015 | A1 |
20150173824 | Davalos et al. | Jun 2015 | A1 |
20150173828 | Avitall | Jun 2015 | A1 |
20150174404 | Rousso et al. | Jun 2015 | A1 |
20150182740 | Mickelsen | Jul 2015 | A1 |
20150196217 | Harlev et al. | Jul 2015 | A1 |
20150223726 | Harlev et al. | Aug 2015 | A1 |
20150230699 | Berul et al. | Aug 2015 | A1 |
20150258344 | Tandri et al. | Sep 2015 | A1 |
20150265342 | Long et al. | Sep 2015 | A1 |
20150265344 | Aktas et al. | Sep 2015 | A1 |
20150272656 | Chen | Oct 2015 | A1 |
20150272664 | Cohen | Oct 2015 | A9 |
20150272667 | Govari et al. | Oct 2015 | A1 |
20150282729 | Harlev et al. | Oct 2015 | A1 |
20150289923 | Davalos et al. | Oct 2015 | A1 |
20150304879 | Dacosta | Oct 2015 | A1 |
20150320481 | Cosman et al. | Nov 2015 | A1 |
20150321021 | Tandri et al. | Nov 2015 | A1 |
20150342532 | Basu et al. | Dec 2015 | A1 |
20150343212 | Rousso et al. | Dec 2015 | A1 |
20150351836 | Prutchi | Dec 2015 | A1 |
20150359583 | Swanson | Dec 2015 | A1 |
20160000500 | Salahieh et al. | Jan 2016 | A1 |
20160008061 | Fung et al. | Jan 2016 | A1 |
20160008065 | Gliner et al. | Jan 2016 | A1 |
20160029960 | Toth et al. | Feb 2016 | A1 |
20160038772 | Thapliyal et al. | Feb 2016 | A1 |
20160051204 | Harlev et al. | Feb 2016 | A1 |
20160051324 | Stewart et al. | Feb 2016 | A1 |
20160058493 | Neal et al. | Mar 2016 | A1 |
20160058506 | Spence et al. | Mar 2016 | A1 |
20160066993 | Avitall et al. | Mar 2016 | A1 |
20160074679 | Thapliyal et al. | Mar 2016 | A1 |
20160095531 | Narayan et al. | Apr 2016 | A1 |
20160095642 | Deno et al. | Apr 2016 | A1 |
20160095653 | Lambert et al. | Apr 2016 | A1 |
20160100797 | Mahapatra et al. | Apr 2016 | A1 |
20160100884 | Fay et al. | Apr 2016 | A1 |
20160106498 | Highsmith et al. | Apr 2016 | A1 |
20160106500 | Olson | Apr 2016 | A1 |
20160113709 | Maor | Apr 2016 | A1 |
20160113712 | Cheung et al. | Apr 2016 | A1 |
20160120564 | Kirkpatrick et al. | May 2016 | A1 |
20160128770 | Afonso et al. | May 2016 | A1 |
20160166167 | Narayan et al. | Jun 2016 | A1 |
20160166310 | Stewart et al. | Jun 2016 | A1 |
20160166311 | Long et al. | Jun 2016 | A1 |
20160174865 | Stewart et al. | Jun 2016 | A1 |
20160183877 | Williams et al. | Jun 2016 | A1 |
20160184003 | Srimathveeravalli et al. | Jun 2016 | A1 |
20160184004 | Hull et al. | Jun 2016 | A1 |
20160213282 | Leo et al. | Jul 2016 | A1 |
20160220307 | Miller et al. | Aug 2016 | A1 |
20160235470 | Callas et al. | Aug 2016 | A1 |
20160249972 | Klink | Sep 2016 | A1 |
20160256682 | Paul et al. | Sep 2016 | A1 |
20160287314 | Arena et al. | Oct 2016 | A1 |
20160310211 | Long | Oct 2016 | A1 |
20160324564 | Gerlach et al. | Nov 2016 | A1 |
20160324573 | Mickelson et al. | Nov 2016 | A1 |
20160331441 | Konings | Nov 2016 | A1 |
20160331459 | Townley et al. | Nov 2016 | A1 |
20160338770 | Bar-Tal et al. | Nov 2016 | A1 |
20160354142 | Pearson et al. | Dec 2016 | A1 |
20160361109 | Weaver et al. | Dec 2016 | A1 |
20170001016 | De Ridder | Jan 2017 | A1 |
20170035499 | Stewart | Feb 2017 | A1 |
20170042449 | Deno et al. | Feb 2017 | A1 |
20170042615 | Salahieh et al. | Feb 2017 | A1 |
20170056648 | Syed et al. | Mar 2017 | A1 |
20170065330 | Mickelsen et al. | Mar 2017 | A1 |
20170065339 | Mickelsen | Mar 2017 | A1 |
20170065340 | Long | Mar 2017 | A1 |
20170065343 | Mickelsen | Mar 2017 | A1 |
20170071543 | Basu et al. | Mar 2017 | A1 |
20170095291 | Harrington et al. | Apr 2017 | A1 |
20170105793 | Cao et al. | Apr 2017 | A1 |
20170120048 | He et al. | May 2017 | A1 |
20170146584 | Daw et al. | May 2017 | A1 |
20170151014 | Perfler | Jun 2017 | A1 |
20170151029 | Mickelsen | Jun 2017 | A1 |
20170172654 | Wittkampf et al. | Jun 2017 | A1 |
20170181795 | Debruyne | Jun 2017 | A1 |
20170189097 | Mswanathan et al. | Jul 2017 | A1 |
20170215953 | Long et al. | Aug 2017 | A1 |
20170245928 | Xiao et al. | Aug 2017 | A1 |
20170246455 | Athos et al. | Aug 2017 | A1 |
20170312024 | Harlev et al. | Nov 2017 | A1 |
20170312025 | Harlev et al. | Nov 2017 | A1 |
20170312027 | Harlev et al. | Nov 2017 | A1 |
20180001056 | Leeflang et al. | Jan 2018 | A1 |
20180028252 | Lalonde | Feb 2018 | A1 |
20180042674 | Mickelsen | Feb 2018 | A1 |
20180042675 | Long | Feb 2018 | A1 |
20180043153 | Viswanathan | Feb 2018 | A1 |
20180064488 | Long et al. | Mar 2018 | A1 |
20180085160 | Viswanathan et al. | Mar 2018 | A1 |
20180093088 | Mickelsen | Apr 2018 | A1 |
20180133460 | Townley et al. | May 2018 | A1 |
20180161093 | Basu et al. | Jun 2018 | A1 |
20180168511 | Hall et al. | Jun 2018 | A1 |
20180184982 | Basu et al. | Jul 2018 | A1 |
20180193090 | De et al. | Jul 2018 | A1 |
20180200497 | Mickelsen | Jul 2018 | A1 |
20180235496 | Wu et al. | Aug 2018 | A1 |
20180256109 | Wu et al. | Sep 2018 | A1 |
20180280080 | Govari et al. | Oct 2018 | A1 |
20180303488 | Hill | Oct 2018 | A1 |
20180303543 | Stewart et al. | Oct 2018 | A1 |
20180311497 | Viswanathan et al. | Nov 2018 | A1 |
20180344202 | Bar-Tal et al. | Dec 2018 | A1 |
20180344393 | Gruba et al. | Dec 2018 | A1 |
20180360531 | Holmes et al. | Dec 2018 | A1 |
20180360534 | Teplitsky et al. | Dec 2018 | A1 |
20190015007 | Rottmann et al. | Jan 2019 | A1 |
20190015638 | Gruba et al. | Jan 2019 | A1 |
20190030328 | Stewart et al. | Jan 2019 | A1 |
20190046791 | Ebbers et al. | Feb 2019 | A1 |
20190069949 | Vrba et al. | Mar 2019 | A1 |
20190069950 | Viswanathan et al. | Mar 2019 | A1 |
20190076179 | Babkin et al. | Mar 2019 | A1 |
20190125439 | Rohl et al. | May 2019 | A1 |
20190125788 | Gruba et al. | May 2019 | A1 |
20190143106 | Dewitt et al. | May 2019 | A1 |
20190151015 | Viswanathan et al. | May 2019 | A1 |
20190175263 | Altmann et al. | Jun 2019 | A1 |
20190183378 | Mosesov et al. | Jun 2019 | A1 |
20190183567 | Govari et al. | Jun 2019 | A1 |
20190192223 | Rankin | Jun 2019 | A1 |
20190201089 | Waldstreicher et al. | Jul 2019 | A1 |
20190201688 | Olson | Jul 2019 | A1 |
20190209235 | Stewart et al. | Jul 2019 | A1 |
20190223948 | Stewart et al. | Jul 2019 | A1 |
20190231421 | Viswanathan et al. | Aug 2019 | A1 |
20190231425 | Waldstreicher et al. | Aug 2019 | A1 |
20190254735 | Stewart et al. | Aug 2019 | A1 |
20190269912 | Viswanathan et al. | Sep 2019 | A1 |
20190298442 | Ogata et al. | Oct 2019 | A1 |
20190307500 | Byrd et al. | Oct 2019 | A1 |
20190343580 | Nguyen et al. | Nov 2019 | A1 |
20190350647 | Ramberg et al. | Nov 2019 | A1 |
20190350649 | Sutermeister et al. | Nov 2019 | A1 |
20200008869 | Byrd | Jan 2020 | A1 |
20200008870 | Gruba et al. | Jan 2020 | A1 |
20200009378 | Stewart et al. | Jan 2020 | A1 |
20200038104 | Mickelsen | Feb 2020 | A1 |
20200046423 | Viswanathan et al. | Feb 2020 | A1 |
20200093539 | Long et al. | Mar 2020 | A1 |
20220071699 | Viswanathan | Mar 2022 | A1 |
20220133405 | Mickelsen | May 2022 | A1 |
Number | Date | Country |
---|---|---|
741167 | Nov 2001 | AU |
1042990 | Oct 2000 | EP |
1125549 | Aug 2001 | EP |
0797956 | Jun 2003 | EP |
1340469 | Sep 2003 | EP |
1127552 | Jun 2006 | EP |
1803411 | Jul 2007 | EP |
1009303 | Jun 2009 | EP |
2213729 | Aug 2010 | EP |
2382935 | Nov 2011 | EP |
2425871 | Mar 2012 | EP |
2532320 | Dec 2012 | EP |
2587275 | May 2013 | EP |
2663227 | Nov 2013 | EP |
1909678 | Jan 2014 | EP |
2217165 | Mar 2014 | EP |
2376193 | Mar 2014 | EP |
2708181 | Mar 2014 | EP |
2777579 | Sep 2014 | EP |
2777585 | Sep 2014 | EP |
2934307 | Oct 2015 | EP |
3056242 | Aug 2016 | EP |
3111871 | Jan 2017 | EP |
3151773 | Apr 2018 | EP |
3656329 | May 2020 | EP |
2000-508196 | Jul 2000 | JP |
2005-516666 | Jun 2005 | JP |
2006-506184 | Feb 2006 | JP |
2008-538997 | Nov 2008 | JP |
2009-500129 | Jan 2009 | JP |
2011-509158 | Mar 2011 | JP |
2012-050538 | Mar 2012 | JP |
9207622 | May 1992 | WO |
9221278 | Dec 1992 | WO |
9221285 | Dec 1992 | WO |
9407413 | Apr 1994 | WO |
9724073 | Jul 1997 | WO |
9725917 | Jul 1997 | WO |
9737719 | Oct 1997 | WO |
9904851 | Feb 1999 | WO |
9922659 | May 1999 | WO |
9956650 | Nov 1999 | WO |
9959486 | Nov 1999 | WO |
0256782 | Jul 2002 | WO |
0353289 | Jul 2003 | WO |
0365916 | Aug 2003 | WO |
2004045442 | Jun 2004 | WO |
2004086994 | Oct 2004 | WO |
2005046487 | May 2005 | WO |
2006115902 | Nov 2006 | WO |
2007006055 | Jan 2007 | WO |
2007079438 | Jul 2007 | WO |
2009082710 | Jul 2009 | WO |
2009089343 | Jul 2009 | WO |
2009137800 | Nov 2009 | WO |
2010014480 | Feb 2010 | WO |
2011028310 | Mar 2011 | WO |
2011154805 | Dec 2011 | WO |
2012051433 | Apr 2012 | WO |
2012097067 | Jul 2012 | WO |
2012153928 | Nov 2012 | WO |
2013019385 | Feb 2013 | WO |
2014025394 | Feb 2014 | WO |
2014031800 | Feb 2014 | WO |
2014036439 | Mar 2014 | WO |
2014100579 | Jun 2014 | WO |
2014160832 | Oct 2014 | WO |
2015021113 | Feb 2015 | WO |
2015066322 | May 2015 | WO |
2015099786 | Jul 2015 | WO |
2015103530 | Jul 2015 | WO |
2015103574 | Jul 2015 | WO |
2015130824 | Sep 2015 | WO |
2015140741 | Sep 2015 | WO |
2015143327 | Sep 2015 | WO |
2015171921 | Nov 2015 | WO |
2015175944 | Nov 2015 | WO |
2015192018 | Dec 2015 | WO |
2015192027 | Dec 2015 | WO |
2016059027 | Apr 2016 | WO |
2016060983 | Apr 2016 | WO |
2016081650 | May 2016 | WO |
2016090175 | Jun 2016 | WO |
2017093926 | Jun 2017 | WO |
2017119934 | Jul 2017 | WO |
2017120169 | Jul 2017 | WO |
2017192477 | Nov 2017 | WO |
2017192495 | Nov 2017 | WO |
2017201504 | Nov 2017 | WO |
2017218734 | Dec 2017 | WO |
2018005511 | Jan 2018 | WO |
2018106569 | Jun 2018 | WO |
2018200800 | Nov 2018 | WO |
2019023259 | Jan 2019 | WO |
2019023280 | Jan 2019 | WO |
2019035071 | Feb 2019 | WO |
2019133606 | Jul 2019 | WO |
2019133608 | Jul 2019 | WO |
2019136218 | Jul 2019 | WO |
2019143960 | Jul 2019 | WO |
2019181612 | Sep 2019 | WO |
2019234133 | Dec 2019 | WO |
Entry |
---|
Du Pre, B.C. et al., “Minimal coronary artery damage by myocardial electroporation ablation,” Europace, 15(1):144-149 (2013). |
Hobbs, E. P., “Investor Relations Update: Tissue Ablation via Irreversible Electroporation (IRE),” Powerpoint (2004), 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/042586, mailed on Oct. 27, 2021, 09 pages. |
Lavee, J. et al., “A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation,” The Heart Surgery Forum #2006-1202, 10(2), 2007 [Epub Mar. 2007]. |
Madhavan, M. et al., “Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study,” Pace, 00:1-11 (2016). |
Neven, K. et al., “Epicardial linear electroporation ablation and lesion size,” Heart Rhythm, 11:1465-1470 (2014). |
Neven, K. et al., “Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture,” Circ Arrhythm Electrophysiol., 7(4):728-733 (2014). |
Neven, K. et al., “Safety and Feasibility of Closed Chest Epicardial Catheter Ablation Using Electroporation,” Circ Arrhythm Electrophysiol., 7:913-919 (2014). |
Van Driel, V.J.H.M. et al., “Low vulnerability of the right phrenic nerve to electroporation ablation,” Heart Rhythm, 12:1838-1844 (2015). |
Van Driel, V.J.H.M. et al., “Pulmonary Vein Stenosis After Catheter Ablation Electroporation Versus Radiofrequency,” Circ Arrhythm Electrophysiol., 7(4):734-738 (2014). |
Wittkampf, F.H. et al., “Feasibility of Electroporation for the Creation of Pulmonary Vein Ostial Lesions,” J Cardiovasc Electrophysiol, 22(3):302-309 (Mar. 2011). |
Wittkampf, F.H. et al., “Myocardial Lesion Depth With Circular Electroporation Ablation,” Circ. Arrhythm Electrophysiol., 5(3):581-586 (2012). |
Number | Date | Country | |
---|---|---|---|
20220022952 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
63056017 | Jul 2020 | US |