The invention relates to a battery operated hand-held power tool with control electronics and a transceiving device that can be addressed in a wireless and non-contact fashion as well as a storage device in which an authorization code is stored with distinguishable locked and released modes of operation. In addition, the invention relates to a rechargeable battery pack for such a device.
Such a hand-held power tool interacts with an essentially miniaturized separate external device that exhibits a battery operated transceiving device and can be carried along by the user. By using this separate control unit, it is possible to place the hand-held power tool—intentionally triggered by the user—in a locked mode of operation or in a released mode of operation in which the device can be used. Such a hand-held power tool is described in DE 102 38 710 A1 and DE 103 09 703 A1 of the applicant. The latter document is concerned with making theft of hand-held power tools in the released mode of operation as unattractive as possible, which is achieved by the hand-held power tool requesting from time to time an authorization code signal from the external device carried by the authorized user. If no respective authorization code signal is received, then the unit will be placed in the locked state and will no longer be operable by an unauthorized thief.
Other hand-held power tools with theft protection devices are known extensively. For example, DE 44 29 206 C2 suggests a theft protection device, where every time a freshly charged battery is plugged in, or the mains connector plug is plugged into the mains outlet, a test routine begins to run that checks for the presence of a code signal that is to be sent continuously. If no code signal is received within a specified period, the machine is placed in the locked mode of operation. However, if the correct code signal is received, the machine will remain in a released mode of operation until the mains plug is pulled or plugged in again or the rechargeable battery is replaced or becomes empty. Thus, according to DE 44 29 206 C2, an attempt is made to make theft unattractive in that the released mode of operation remains for only a limited time after the hand-held power tool is removed from the code signal transmitter, i.e., at the longest until the next battery change. The mentioned code signal transmitter is not housed in an external separate device that can be taken along but according to the documents is provided at a fixed location, for example in a tool room. This shall ensure that the hand-held power tool is operated only at an authorized work location. In addition, the mentioned device has a disadvantage in that for proper operation the code signal must be transmitted essentially continuously in the direction of the hand-held power tool. At least during renewed start-up after a battery change or after plugging in the mains plug, the code signal must be transmitted for a relatively long period. During this time, the code signal transmitter must be supplied with power. Thus, it must be either connected to a battery charger such that the code signal is transmitted for an extended period at least after removing the battery from the charger or the code transmitter must be connected to a power supply continuously. In any case, it would not be possible to provide the code signal transmitter in a separate external device that can be carried along, because for practical reasons the required power supply could not be ensured with usual batteries. On the foundation of the concept known from DE 44 29 206 C2, designing the code signal transmitter as an external device that can be taken along, in particular in the size of a key chain, would not be suitable because the battery life would be too short. A theft protection device for the rechargeable battery pack is not provided.
Furthermore, from DE 100 29 138 A1, a hand-held power tool is known with a theft protection device on a transponder basis. The hand-held power tool exhibits a transceiving device. Its control electronics is continuously intent upon assuming a locked mode of operation in which the unit cannot be operated. A user needs a transponder if he wants to operate the unit. An electromagnetic field is transmitted by the machine that supplies energy to a transponder accommodated, for example, in a wristband, such that it can emit this authorization code signal, which in turn is received by the transceiving device of the hand-held power tool. However, the transponder has to be in the immediate vicinity of the hand-held power tool; otherwise it cannot obtain the energy required for transmitting the authorization code signal. If the authorization code signal transmitted by the transponder matches the one stored in the memory device of the hand-held power tool, the unit is placed in the released mode of operation and can be operated. The signal source sampling described above is then carried out intermittently. The hand-held power tool remains operational only as long as this communication identifies an authorized user.
A transponder obtains the energy required for its operation from the electromagnetic field acting upon it. For this reason, it is essential that the transponder is placed in the immediate vicinity of the hand-held power tool in order to allow for the release of the unit. As soon as a user departs briefly, the unit will return to the locked mode of operation, which can prove to be annoying in practical applications. A theft protection device for the rechargeable battery pack is not provided.
It is the objective of the present invention to make the theft of battery-operated hand-held power tools and of battery packs for such tools even less attractive.
According to the invention this objective is achieved in that a wired or wireless interface is provided from the control electronics of the hand-held power tool to a battery pack such that the locking data can be transmitted from the control electronics of the hand-held power tool to the battery pack and stored in a storage device of the battery pack and then retrieved again from said storage device. In the manner subject to the invention, the battery pack is integrated or included in the theft protection device of the hand-held power tool. In a sense, the interface of the hand-held power tool to an external transceiving device is used for the battery pack as well. Locking data that the hand-held power tool receives externally via a transceiving device are transmitted via the mentioned wired or wireless interface between the control electronics of the hand-held power tool and the battery pack to the battery pack and are stored there. Thus, the control electronics of the hand-held power tool can actively assume the theft protection for the battery pack as well by providing the locking data to the battery pack and storing them in the storage device of the battery pack and in the reverse way, locking data can be retrieved from the storage device of the battery pack and processed further in the control electronics of the hand-held power tool. For these purposes, it is advantageous that it is not necessary to provide a sophisticated control electronics with an evaluation logic in the battery pack; rather it is in principle sufficient that a storage device is provided in the battery pack that can be addressed or queried via the control electronics of the hand-held power tool using the mentioned interface. However, it shall be noted expressly that in addition, computing capacities may be provided in the battery pack, in particular to perform additional functions and, where applicable, for purposes of interacting with a charger.
It would be conceivable and advantageous that the control electronics of the hand-held power tool is designed such that the locking data are transmitted to the battery pack and/or retrieved from the storage device of the battery pack via the interface at one or more predetermined times or time intervals or when specified or specifiable conditions are present. In this fashion, it is then possible to check or verify again and again that a user authorization exists for the currently employed or used battery pack.
Advantageously, the control electronics of the hand-held power tool can also be designed such that when connecting a battery pack with the hand-held power tool, an authorization code or locking data in the broadest sense stored in the storage device of the hand-held power tool are automatically transmitted via the interface to the battery pack and are there stored in the memory device of the battery pack and/or that an authorization code stored in the storage device of the battery pack can be retrieved and passed on to the control electronics of the hand-held power tool via the interface.
It is additionally recommended to design the control electronics of the hand-held power tool such that starting from a released mode of operation of the hand-held power tool at one or more pre-specified times or when specified or specifiable conditions are present, a request for an authorization code signal is transmitted to an external transceiving device in a device that can be carried along by the user. This offers the advantage that the external transceiving device does not need to be in a continuously transmitting operating mode; rather it is sufficient that a ready-to-receive-state for the mentioned authorization code signal request is provided.
In an even further development of this thought, the external transceiving device is designed such that upon reception of an authorization code signal request, a transmission operating mode can be activated and an authorization code signal is transmitted to the transceiving device of the hand-held power tool and that thereafter the transmission operating mode can be deactivated again automatically. In this fashion, an energy-saving operation of the external transceiving device is possible that can be supplied with energy by one battery over a long period.
Furthermore, the control electronics and the transceiving device of the hand-held power tool are designed such that after evaluating the received authorization code signal and comparing it with the authorization codes stored in the storage device of the hand-held power tool and with the authorization code stored in the storage device of the battery pack and readable via the interface, the hand-held power tool either remains in the released mode of operation or is placed in the locked mode of operation. Thus, the battery pack is again included in the theft protection of the hand-held power tool through the locking data stored there. If the locking data that are to be compared do not match, i.e., a comparison shows that either the hand-held power tool or the battery pack does not contain stored information that matches, for example, the authorization code (code key) transmitted from the named external transceiving device, the continued operation of the unit will be denied in that both the hand-held power tool and the battery pack are placed in a locked mode of operation.
It also proves to be advantageous if the hand-held power tool features a display device for displaying the operational state (released or locked state) of the hand-held power tool and the operational state of the battery pack.
Furthermore, protection is also sought for a battery pack for a hand-held power tool, in particular for a hand-held power tool subject to the invention as described above according to the additional claims 9 and 10. Such a battery pack subject to the invention features—as has already been mentioned—a storage device, where an authorization code can be stored, and a wired or wireless interface to a control electronics of a hand-held power tool or a transceiving device that can be addressed in a wireless or non-contact fashion for communicating with an external transceiving device of an external control unit. The battery pack itself may feature its own programmable control electronics that is capable of discerning between a locked mode of operation and a released mode of operation of the battery pack.
Additional features, details and advantages become apparent from the drawing and the following description of a preferred embodiment of the battery operated hand-held power tool subject to the invention.
In the drawing:
According to the invention, the battery pack 4 is also integrated in the theft protection described above. The hand-held power tool possesses an additional wired or wireless interface 22 between the control electronics 14 and the battery pack 4. Preferably, the interface 22 is designed such that it is active only when the hand-held power tool is connected with the battery pack 4 for the intended use. However, it is also conceivable to design a wireless and non-contact interface 22, such that a bidirectional communication between the hand-held power tool 2 and the battery pack 4 is possible even when they are in proximity of each other, however not (yet) connected to each other for the intended use. Via the interface 22, locking data in the broadest sense received from the external device 6 can be transmitted from the control electronics 14 of the hand-held power tool to the battery pack 4 and can there be stored in a storage device 24 or retrieved from said storage device 24, respectively. Fundamentally, it would be sufficient for the battery pack to feature only one storage device that can be written to or retrieved, initiated by the control electronics 14 of the hand-held power tool 2. However, it is also conceivable and advantageous for the battery pack 4 to include its own control electronics 26, in particular if it is a lithium ion battery pack. Especially in such a case it would be conceivable and advantageous for the battery pack to have its own transceiving device 28 that is addressed in a wireless and non-contact fashion and that, in principle, could in constitute an interface 30 with the external device 6.
In one preferred embodiment of the invention, the hand-held power tool 2 or its control electronics 4, respectively, is designed such that locking data received via the interface 10 are both stored in the internal storage device 16 of the unit as well as provided to the battery pack 4 via the interface 22 and stored in the storage device 24 of the battery pack. When during an authorization query either the locking data stored in the storage device 24 of the battery pack 4 or the locking data stored in the storage device 16 of the hand-held power tool 2 do not match a authorization code signal received by the external device 6, then both the hand-held power tool 2 and the battery pack 4 will be placed in a locked mode of operation. To this end, the control electronics 26 of the battery pack 4 can, for example, prevent the current or voltage supply of the battery cells to the consumer via a not shown switch, until it has been taken actively out of this locked mode of operation and again placed in a released mode of operation.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/012342 | 11/18/2005 | WO | 00 | 4/16/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/057037 | 5/24/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20040108120 | Wiesner et al. | Jun 2004 | A1 |
20050035659 | Hahn et al. | Feb 2005 | A1 |
20060071753 | Lamar | Apr 2006 | A1 |
20060087283 | Phillips et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
38 03 357 | Aug 1989 | DE |
44 29 206 | Mar 1996 | DE |
100 29 138 | Jan 2002 | DE |
102 38 710 | Mar 2004 | DE |
103 09 703 | Sep 2004 | DE |
WO 9723986 | Jul 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20080238609 A1 | Oct 2008 | US |