The invention relates to an electric hand tool, in particular a jackhammer or a percussion drill.
In a known jackhammer or percussion hammer (German Patent Disclosure DE 28 20 128 A1), the gear shaft, forming part of a layshaft gear, is received rotatably in the housing by means of two ball bearings, which with their inner bearing ring are each shrink-fitted onto one end portion of the gear shaft. The outer bearing ring of the ball bearing is press-fitted in a respective bearing box. One of the bearing boxes is embodied in the housing, and the other of the bearing boxes is embodied in an intermediate flange retained in the housing. Each bearing box has an annular shoulder, on which the outer bearing ring is placed for its positionally correct positioning in the process of press-fitting the ball bearing into the bearing box.
The electric hand tool of the invention has the advantage that because of the sliding seat, provided according to the invention, of the radial bearing in the bearing box, the gear shaft and radial bearing can be easily assembled and then, by means of the clamping bracket provided according to the invention, can be axially fixed in the housing without tools. An axial stop provided on the bearing box predetermines the positionally correct position. The clamping bracket is an inexpensive component and makes a compact design of the drive gear possible.
By means of the provisions recited in the further claims, advantageous refinements of and improvements to the electric hand tool defined by claim 1 are possible.
In a preferred embodiment of the invention, the clamping bracket is embodied spring-elastically and can be slipped onto the bearing box transversely to the axis of the gear shaft in such a way that it fits over the outer ring of the radial bearing, on one face-end annular face thereof, and the radial bearing is adapted, with its other face-end annular face, to an axial stop embodied on the bearing box. The clamping bracket that is resilient in the axial direction of the gear shaft serves as a lever during assembly and with a high axial clamping force it makes an only slight assembly force possible, since the high clamping force is attained only just before the final position of the clamping bracket is reached. For this purpose, in an advantageous embodiment of the invention, the clamping bracket has two spring-elastic bracket arms, which can be inserted axially nondisplaceably by their free end portions into two first counterpart bearings embodied on the bearing box, and also has a transverse part integrally joining the two bracket arms at the other ends of the arms; this transverse part is axially nondisplaceably fixable in a second counterpart bearing, embodied on the bearing box.
To generate a high clamping force, in an advantageous embodiment of the invention, the bracket arms are embodied as flat and in at least one arm portion are provided with a bulge oriented transversely to the plane of the bracket arms.
In an alternative embodiment of the invention, the bracket arms extend parallel to one another and each have one longitudinally extending guide rib. The guide ribs can be inserted into longitudinal grooves that extend parallel to one another and are diametrically opposite one another on the bearing box and extend transversely to the bearing axis.
The invention is described in further detail in the following description, in terms of exemplary embodiments shown in the drawing. Shown are:
The jackhammer, shown in fragmentary form in longitudinal section in
Both the rotary pivoting motion of the rotary sleeve 16 and the translational motion of the drive piston 18 are derived from the power takeoff shaft 14 of the electric motor by means of an intermediate shaft 20. To that end, on the power takeoff shaft 14, a drive pinion 19 is embodied, which meshes with a gear wheel, in this case an intermediate gear wheel 22, that is press-fitted onto the intermediate shaft 20. The power takeoff shaft 14 is received, with its wave portion directly adjacent the drive pinion 19, in a ball bearing 21, which is fixed in the intermediate flange 13. The intermediate shaft 20 supports a layshaft pinion 23 in a manner fixed against relative rotation, and this pinion meshes with a layshaft gear wheel, not shown, which in turn engages a ring gear embodied on the rotary sleeve 16.
The percussion mechanism 17 is driven by the intermediate shaft 20 via a pendulum gear 24. In the exemplary embodiment shown, the pendulum gear 24, which is known per se, has a drive bearing 25, embodied as a ball bearing, which is either seated in a manner fixed against relative rotation on the intermediate shaft 20 or is loosely slipped onto it and can then be connected by means of a coupling to the intermediate shaft 20 for the sake of taking over rotation. The drive bearing 25, comprising an inner bearing body 251 and an outer bearing ring 252 with balls 253 disposed between them is placed with its inner bearing body 252 on the intermediate shaft 20 and is embodied such that the bearing axis forms an acute angle with the axis of the intermediate shaft 20. The outer bearing ring 252 of the drive bearing 25 supports a radially protruding slaving bolt 26, which with play engages a qb of a pivot bolt 27. The pivot bolt 27 is retained in a bifurcated end of the drive piston 18. The intermediate shaft 20 is rotatably supported in the housing 10 by means of two radial bearings. The radial bearing 28 shown on the left in
For firmly fastening the clamping bracket 32 to the bearing box 31 or to the intermediate flange 13, two slotlike first counterpart bearings 33, 34 and one second counterpart bearing 35 embodied as an undercut are embodied on the bearing box 31 and the intermediate flange 13, respectively. In the process of slipping the clamping bracket 32 onto the intermediate flange 13, the free end portions 321′ and 322′ are each slipped into a respective one of the first counterpart bearings 33, 34, and the first counterpart bearings 33, 34 axially nondisplaceably fix the bracket arms 321, 322. The clamping bracket 32 is then slipped on far enough that the rear-engagement rib 323′, embodied on the transverse part 323, is located immediately in front of the second counterpart bearing 35 on the underside of the bearing box 31. The clamping bracket 32 is then pressed onto the bearing box 31 counter to the spring force of the bulges 324 and is displaced farther, until the rear-engagement rib 323′ engages the undercut of the second counterpart bearing 35 from behind (
In
The embodiment of the bearing box 31 in the intermediate flange 13 is modified such that instead of the counterpart bearings on the bearing box 31, two parallel longitudinal grooves 43, 44 (
The invention is not limited to the jackhammer described. It can be employed in any electric hand tool in which a gear shaft is rotatably supported by means of a radial bearing, such as power drills, power saws, power planes, and the like.
Number | Date | Country | Kind |
---|---|---|---|
103 12 981 | Mar 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/03626 | 10/31/2003 | WO | 00 | 10/1/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/085118 | 10/7/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3456740 | Bronnert et al. | Jul 1969 | A |
3874460 | Schmid et al. | Apr 1975 | A |
4284148 | Wanner et al. | Aug 1981 | A |
4719976 | Bleicher et al. | Jan 1988 | A |
4732217 | Bleicher et al. | Mar 1988 | A |
4895212 | Wache | Jan 1990 | A |
5775440 | Shinma | Jul 1998 | A |
5787996 | Funfer | Aug 1998 | A |
5873418 | Arakawa et al. | Feb 1999 | A |
6015017 | Lauterwald | Jan 2000 | A |
6712156 | Funfer | Mar 2004 | B1 |
Number | Date | Country |
---|---|---|
356 396 | Sep 1961 | CH |
28 20 128 | Nov 1979 | DE |
0 403 789 | Dec 1990 | EP |
2 322 675 | Sep 1998 | GB |
Number | Date | Country | |
---|---|---|---|
20050126801 A1 | Jun 2005 | US |