This application claims priority from Korean Patent Application No. 10-2019-0151041 filed on Nov. 22, 2019 in the Korean Intellectual Property Office, and all the benefits accruing therefrom under 35 U.S.C. 119, the contents of which in its entirety are herein incorporated by reference.
The described technology relates to an electric heating apparatus, more specifically, to an electric heating apparatus with multiple heating lamps that may be installed for hatching and/or breeding livestock of poultry, cattle, swine, etc. or for heating a bathroom in a home or other areas that need to be heated.
Infrared heating lamps typically emit thermal energy with a temperature of about 200 degrees Celsius to elevate the temperature of an area and have various applications, for example, in stables of livestock, for a portable bath sauna, and as an area heater for a bathroom.
Related art is described in Korean Patent Registration No. 10-1428785 (Heating cap of water proof for infrared lamp). In this related art, a socket is fixed to an upper side of a heating dish, and protrusions of a heat dissipation cap are adhered and fixed to the heating dish, and thus the heat of the heating lamp itself cannot be dissipated out of the heating dish, thereby possibly causing the heating lamp to be accidentally detached from the socket due to thermal expansion of the socket.
An objective of the described technology is to provide an electric heating apparatus with multiple heating lamps that can increase the heat emitted by a single heating apparatus, thereby allowing a minimal number of heating apparatus installations in the space where heating is needed, and can emit the heat of the heating apparatus itself to the exterior as much as possible, thereby improving the durability and stability of the heating apparatus.
Another objective of the described technology is to provide an electric heating apparatus with multiple heating lamps that can prevent fires and electrocution by turning the power of the heating apparatus off in the event of the heating apparatus becoming detached and falling off from its support.
To achieve the objectives above, an electric heating apparatus with multiple heating lamps according to an embodiment of the described technology can be equipped with multiple heating lamps on the inside of the reflector dish to be capable of emitting high thermal energy from a single heating apparatus. The heating lamps can be installed on the inside of the reflector dish, each with an inclination, so that a broader range of irradiation may be provided.
A heat dissipation cap can be structured such that sockets which receive and connect to the heating lamps and a heat dissipation body on which heat dissipation pins are formed are formed as an integrated body, so that the heat generated in the heating lamps themselves can be efficiently discharged through the sockets to the heat dissipation pins. The reflector dish can have a hot-air vent formed in the upper surface to discharge the heat inside the reflector dish upwards, and the hot air discharged through the hot-air vent can be discharged to the exterior through a separated gap between the rim of the heat dissipation cap and the upper surface of the reflector dish.
Therefore, the transfer of heat from the heating lamps themselves positioned within the reflector dish can be achieved by conduction through the heat dissipation cap as well as by convection through the hot-air vent formed in the upper surface of the reflector dish.
The described technology can control all lamps or individual lamps in terms of turning the power on/off and dimming through remote control using near-field communication or manual control using a dial switch, touchpad, etc., so that the temperature and illuminance of the space where heating is needed may be controlled from the electric heating apparatus with multiple heating lamps.
With the described technology, if the heating apparatus were to fall off from the holder due to damage to the rope, chain, etc., the elastic force of a spring compressed by the weight of the heating apparatus can return the hanger can to its original position and at the same time operate the switch for supplying power to the heating lamps such that the lamps are turned off.
According to the described technology above, multiple heating lamps may be positioned within the reflector dish, and the heating lamps may have particular inclinations, allowing a broader range of irradiation, and increasing efficiency in terms of installing, maintaining, and operating the electric heating apparatus.
Also, instead of having the sockets affixed to the reflector dish, the structure has the sockets inserted in and secured to the socket connectors of the heat dissipation cap with heat dissipation pins formed on the lower surface touching the upper portion of the reflector dish, so that the heat of the reflector dish and the heating lamps themselves may be discharged by way of conduction, while at the same time, the hot air inside the reflector dish may be moved to the upper portion of the reflector dish through a hot-air vent and afterwards may be discharged to the exterior by way of convection through the rim side of the heat dissipation cap. Through such increased efficiency in heat dissipation, the durability and safety of the heating apparatus can be improved.
All of the heating lamps or individual heating lamps can be controlled with respect to turning the power on/off and dimming by using remote control and manual control. Thus, the described technology can improve user convenience by allowing the user to adjust the temperature and illuminance in the space where the electric heating apparatus is installed.
In the event of the electric heating apparatus becoming detached from the holder, the power supply can be cut off immediately, so that the risk of fires or electrocution can be fundamentally prevented.
In a typical heating apparatus, only one heating lamp is positioned within a heating dish, when supplying and maintaining the required temperature according to the space where heating is needed, a multiple number of heating devices must be installed, so that additional structures are needed for supporting the heating devices, and there are difficulties in maintaining the multiple heating devices individually. Moreover, if a heating device were to fall off from a holder, this would create a risk of a fire or electrocution.
The descriptions that follow are provided as examples only and merely illustrate certain embodiments of the described technology. The principles and concepts of the described technology are provided in consideration of both usefulness and ease of description.
Therefore, structures are not described in a level of detail that goes beyond what is necessary for a basic understanding of the described technology, and various embodiments are provided as examples in a manner that would allow those of ordinary skill in the art to practice the described technology.
The compositions and operations of certain preferred embodiments of the described technology are described below in more detail with reference to the accompanying drawings.
As shown in
The electric heating apparatus 1000 can have multiple heating lamps 20 installed on the inside of the reflector dish, so that when the electric heating apparatus is installed according to the required temperature in the space where heating is needed, the installation, maintenance, and operation can be made more efficient compared to case of the conventional heating apparatus having a single lamp. For example, if a space where heating is needed requires thirty heating lamps to provide the required temperature, using a heating apparatus having a single heating lamp would need thirty heating apparatuses and hence would require considerable work in installing mounts for the heating apparatuses, placing wiring for the electrical supply, and the like. However, an electric heating apparatus 1000 based on the described technology can have three heating lamps installed within a single reflector dish, so that in the example above, just ten heating apparatuses would be needed, and the installation work and wiring placement involved would be much simpler. Also, although it is not shown in the drawings, an electric heating apparatus 1000 based on the described technology can receive temperature measurements from a temperature sensor positioned at a particular location in the space where heating is needed to control the temperature in the space where heating is needed or can be controlled efficiently by a central management apparatus that can control the on/off state of the heating lamps.
The heating lamps 20 can include various heating lamps, such as infrared heating lamps, etc., that are capable of providing a particular temperature in a space for hatching and breeding livestock or any other space where heating is needed, such as a sauna, bathroom, etc. The multiple heating lamps 20 can be installed each with a particular inclination within the reflector dish so as to irradiate a broad range.
The electric heating apparatus 1000 can further include a protective screen 10, which may be installed at a lower portion of the reflector dish, to protect the heating lamps 20 positioned inside the reflector dish 40 and to prevent burns in the event of contact with a person's body.
The electric heating apparatus 1000 can have a wire guide 60, for distributing the electrical wires to the respective sockets 30 in an organized manner, positioned between the heat dissipation cap 50 and the cover 80. The wire guide 60 can have a screw fastener formed on the lower surface to be screw-joined with a wire guide-fastening hole 58 of the heat dissipation cap 50, so that the wire guide 60 may be coupled to an upper portion of the heat dissipation cap 50. The heating lamps 20 can be connected to the heat dissipation cap 50 by sockets 30. The sockets 30 can be inserted into socket connectors 59 formed in the heat dissipation cap 50 to be coupled to the heat dissipation cap 50. A hanger piece 81 can be formed on the upper end of the cover 80 for use in installing the electric heating apparatus.
Referring to
The heat dissipation cap 50 can be coupled to the reflector dish 40 as each socket connector 59 formed on the heat dissipation cap 50 is inserted through a socket connection hole 41 formed in the upper surface of the reflector dish 40 and, while in this state, is fastened by a screw joint to a screw-fastening hole 43 of the reflector dish and a reflector-fastening hole of the heat dissipation cap. In this case, a reflector-connection guide 55 formed on the outer surface of the socket connector 59 can touch the upper surface of the reflector dish such that the heat dissipation cap 50 is supported and secured to the upper portion of the reflector dish. In a bottom surface of the socket connector 59, a wire passage hole 54 can be formed through which an electrical wire introduced from the wire guide may pass.
The bottom surface of each socket connector 59 can be formed with an inclined slope of a particular angle from the center of the heat dissipation cap 50 such that the multiple heating lamps 20 may each have an inclination within the reflector dish. The multiple heating lamps 20 connected by the sockets 30 to the socket connectors 59 formed with inclinations can irradiate heat to below the reflector dish while each is inclined at a particular angle. Thus, the inclined heating lamps 20 can emit thermal energy over a broad space to maximize the transfer of heat. A multiple number of socket-connection guides 56 can be formed on the inner surface of each socket connector 59 in a direction corresponding to the length of the socket. The socket-connection guides 56 can be press-fitted onto the outer surface of the socket 30. The socket-connection guides 56 can be used as paths of heat transfer for transferring the heat generated in the heating lamp 20 itself through the socket 30 to the heat dissipation cap 50.
Referring to
Thus, the electric heating apparatus 1000 can discharge the heat of the reflector dish and the heating lamps themselves by way of the heat dissipation cap, by discharging the heat through the heat dissipation pins 51 touching the reflector dish and the reflector-connection guides 55 of the socket connectors, while at the same time having the hot air within the reflector dish moved to an upper portion of the reflector dish through the hot-air vents 42 and afterwards moved along the heat dissipation pins and discharged to the exterior through the separated gap H formed at the edge of the heat dissipation cap, to thereby provide improved durability and safety.
As shown in
A manipulation unit (or a manipulation circuit) 220 can be installed within an expansion panel extending from the cover 80 and can include any of a variety of input devices, such as a dial switch, touchpad, etc., capable of providing a dimming command execution signal for turning on/off and dimming individual heating lamps or all heating lamps to the control unit.
The signal receiver unit 210 can use near-field communication technology such as Bluetooth, RFID (radio frequency identification), IrDA (infrared data association), UWB (ultra-wideband), ZigBee, etc.
When an on/off command execution signal inputted from the signal receiver unit 210 using near-field communication or a dimming command execution signal inputted from a manipulation unit 220 composed of a dial switch, touchpad, etc., is received, the control unit 200 can output a control command corresponding to the command execution signal to the switching unit 230 or the dimming unit 240 to control individual heating lamps or all of the heating lamps in terms of turning the power on/off or dimming.
As shown in
The electric heating apparatus 1000 can be suspended from a particular holder with a rope, chain, etc., fastened to a holding hole 310 formed in the hanger 300. When the electric heating apparatus 1000 is suspended and held from a holder, the hanger 300 may be moved upward due to the self weight of the electric heating apparatus 1000. As the hanger 300 is moved upward, the spring 330 may be compressed until the upper surface of the support 320 is placed in contact with the stopper 340. At the same time, a guide bar 401 and a button 402 of the switch 400 touching a surface of the support 320 may be pressed, and the switch 400 may be operated to allow a lighting of the heating lamps.
If the rope, chain, etc., fastened to the holding hole 310 were to become untied or snap by an external force, etc., the electric heating apparatus 1000 can fall downward. In such a case, as soon as the support 320 of the hanger 300 becomes detached from the stopper 340 due to the elastic force of the spring 330, the force pressing the guide bar 401 is removed, and the button 402 may pop out, operating the switch 400 and turning off the heating lamps. The switch can be composed of a magnetic switch, etc., that receives a force from an up/down movement of the hanger 300 to turn the switch on/off. Although a magnetic switch is described as an example, the switch 400 is not thus limited and can include any of a variety of switches such as a limit switch, a press switch, etc., having a structure capable of opening and closing the switch according to an up/down movement of the hanger 300.
Inside the cover, a protrusion 82 can be formed for restricting the distance of downward movement of the hanger 300 by the elastic force.
If an electric heating apparatus having a high temperature were to be detached from the holder and fall onto flammable material such as dry straw, etc., while the lamps have not been turned off, there is a high risk of a fire, which may cause great material losses and pose an important problem in safety. To prevent a fire from occurring because of such electric heating apparatus, the electric heating apparatus can be made to detect an inclination caused by a detachment and turn off the lamps. Although a mechanical switch such as a tilt switch, etc., is used as a structure for detecting an inclination in the electric heating apparatus, if the electric heating apparatus becomes detached from the holder but is placed on dry straw horizontally without being inclined, the electric heating apparatus would not be turned off and a fire could not be prevented. In preparation for such an occurrence, the described technology can have the switch turned off as the hanger is moved downward by the elastic force of the spring, just from the electric heating apparatus becoming detached from the holder, to immediately turn off the lamps and fundamentally prevent the risk of fire.
While the foregoing provides a detailed description of the described technology by way of representative embodiments, those having ordinary skill in the field of art to which the described technology pertains would understand that numerous variations can be derived from the embodiments described above without departing from the scope of the described technology.
Therefore, the scope of protection of the described technology is not to be limited to the embodiments described above but rather is to be defined by the claims set forth below as well as their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0151041 | Nov 2019 | KR | national |