The present invention relates to an electric heating device comprising a housing with a partition wall, which separates a connection chamber from a heating chamber for dissipating heat and from which at least one PTC heating element protrudes as a heating rib in the direction toward the heating chamber, where the PTC heating device comprises at least one PTC element (12) and conductor tracks electrically connected in the connection chamber for energizing the PTC element with different polarities and connected to the latter in an electrically conductive manner. Such an electric heating device is known, for example, from EP 1 872 986 A1 or EP 2 337 425 A1. Another also generic electric heating device is known from EP 3 334 242 A1. In this prior art, the PTC heating element with a heating housing forming the heating rib is first manufactured as a separate component and inserted as such into a heating element receptacle formed on the partition wall, so that the end of the heating housing on the connection side is received in a sealed manner in the heating receptacle of the partition wall and the conductor tracks with their free ends on the connection side are exposed in the connection chamber in order to be electrically connected there.
In the prior art previously mentioned, the PTC heating device thus preassembled is held in a frictionally engaged manner in the heating receptacle. For this purpose, the PTC heating device has a labyrinth seal that is formed by the heating housing and pressed into the heating receptacle.
According to the teaching of EP 1 872 986 A1 and EP 2 337 425 A1, the PTC heating device is inserted into a receiving pocket of the heating rib and contacted in a thermally conductive manner to the inner surfaces of the receiving pocket. The conductor tracks protrude beyond the receiving pocket in the direction toward the connection chamber and are electrically connected there to the power current for energizing the PTC heating element. In this prior art, the heating rib is formed integrally with the partition wall and protrudes at a right angle to the partition wall.
The embodiments previously discussed are also examples for realizing the features of the preamble of claim 1 of the present invention.
Starting out from generic prior art, it is based on the object of specifying an electric heating device of the kind mentioned at the outset having a compact structure.
In this regard, the present invention proposes an electric heating device comprising a housing having a partition wall which separates a connection chamber from a heating chamber for dissipating heat, and at least one PTC heating device that protrudes from the housing as a heating rib in a direction toward the heating chamber. The PTC heating device comprises at least one PTC element and conductor tracks that electrically connected in the connection chamber for energizing the PTC element with different polarities and that are connected to the PTC element in an electrically conductive manner. The heating chamber, in a top view onto the partition wall, has a substantially rectangular base area. The the PTC heating device is arranged in an oblique orientation relative to the base area.
This electric heating device may be an electric heating device for a motor vehicle. The housing is typically a housing that is formed to be suitable for heating a liquid medium and has inlet and outlet ports for this purpose, but otherwise seals the heating chamber. The partition wall typically separates the connection chamber from the heating chamber in a fluid-tight manner. An upper end of the PTC heating device extends through the partition wall. Several PTC heating devices are typically provided and protrude as heating ribs into the heating chamber. The end of the PTC heating device protruding into the connection chamber typically comprises contact strips which are electrically contacted in the connection chamber, for which purpose a contact device may be provided which combines the various PTC heating devices by grouping the contact strips to form heating circuits and is provided with contact strips which in the orientation of the contact strips of the PTC heating devices protrude into a populated printed circuit board. This populated printed circuit board controls the power current for heating the PTC heating device and typically forms a control device.
In a manner known per se and in a top view onto the partition wall, i.e. a line of sight substantially at a right angle to the partition wall, the electric heating device according to the invention has a substantially rectangular base. In this context, substantially means that the base area may well have rounded edges and soft contours which favor the flow conditions within the heating chamber and prevent unnecessary flow resistance. In the top view presently at issue, however, the base area is approximately rectangular, where bulges or the like can protrude laterally over this base area. The PTC heating devices are arranged in an oblique orientation relative to the rectangular round surface. The PTC heating devices may extend at an angle of 45°+/−15°.
Where it is assumed that the PTC heating devices, like in prior art, in a cross-sectional view basically have an elongated rectangular shape. Main side surfaces of the PTC heating devices disposed opposite to each other abutting against the corresponding main side surfaces of the PTC element in a thermally conductive manner there form the main surfaces of the PTC heating device. These main side surfaces are connected by face surfaces which in a cross-sectional view of the PTC heating device have a relatively small extension in relation to the main side surfaces. The main side surfaces of the PTC heating device are there in a cross-sectional view of the PTC heating device defined by a width. The face surface has a thickness. The longitudinal direction of extension of the PTC heating device runs at a right angle to the planes defined by the width and the thickness. The PTC heating device typically protrudes from the partition wall with this longitudinal direction of extension.
The oblique orientation of the PTC heating devices relative to the base area results in a more compact design of the electric heating device. The PTC heating devices can there have a width which is greater than the width of the rectangular heating chambers, and then even leave a passage free at the face surface through which the fluid to be heated can flow from one flow channel between adjacent PTC heating devices to the next channel between neighboring PTC heating devices.
According to a development of the present invention, the PTC heating devices are aligned in the top view parallel to one another. In a cross-sectional view of the PTC heating devices, flow channel sections with a constant width accordingly arise between the individual PTC heating devices.
With regard to the space-saving accommodation of inlet and outlet openings for the entry of the fluid to be heated into the heating chamber, it is accordingly proposed in a development of the present invention to provide the respective inlet and outlet openings to the heating chamber in diagonally oppositely disposed corners of the base area. Opposite to a face surface, the housing surrounding the heating chamber may be concave in top view. This concave region defines a flow channel section which is formed between two PTC heating devices. The fluid to be heated is then deflected with little loss at the end of the inflow channel by the concave shape of the outer boundary formed by the housing to arrive at the next flow channel section. It is there assumed that the PTC heating device may directly adjoin an edge surface which is formed by the housing and defines the heating chamber. A receptacle, in cross section may have a C-shape, and may protrude from this edge surface and accommodates a face surface of the PTC heating device. The outer surface of this C-shaped receptacle, which also forms the walls defining the heating chamber, generally transition continuously and steplesssly to the surface of the PTC heating device, regularly to the main side surfaces thereof. This also reduces the flow resistance within the heating chamber.
A housing lower part of the housing substantially surrounding the heating chamber may be formed from plastic material.
According to an independent aspect of the present invention, the latter proposes an electric heating device having the features of the preamble of claim 6. Such an electric heating device in a top view does not necessarily but may have a rectangular base. The electric heating device specified according to the independent aspect has PTC heating devices which are each plug-connected in a receptacle formed on the partition wall, as is known in principle from EP 3 334 242 A1. The PTC heating devices are at their end disposed opposite to the receptacle supported on a base that is disposed opposite to the partition wall. Plug-connected PTC heating devices provided one behind the other are alternately associated with oppositely disposed edge surfaces of the heating chamber, so that a meandering flow channel is formed in the heating chamber.
Such flow guidance improves the heat dissipation from the PTC heating devices. The medium to be heated is inevitably passed along the main side surfaces of the PTC heating devices and through the respective sections of the flow channel.
Regardless of the specific configuration of the flow channel, the PTC heating devices are in any case may be formed as PTC heating devices which are plug-connected in a receptacle formed by the partition wall. With regard to good positioning in the heating chamber, it is proposed according to a preferred development of the present invention to provide the base of the housing lower part with at least one conically tapering feed guide for every PTC heating device. This feed guide serves to position a free end of the PTC heating device. If the PTC heating devices are first inserted into the receptacles of the partition wall and the housing lower part is then abutted against a housing upper part forming the partition wall in order to complete the heating chamber, then the PTC heating device is positioned by one, usually by several tapering feed guides for every PTC heating device in the context of the joining motion of the housing lower part and the housing upper part.
With regard to reliable flow guidance along the main side surfaces, it is proposed according to a development of the present invention that the base comprises a longitudinal groove which accommodates the free end of the PTC heating device. This longitudinal groove not only positions the PTC heating device. It also prevents the fluid to be heated from flowing past the free end of the PTC heating device on the side opposite the partition wall without being sufficiently heated. Because, due to the self-regulating properties of the PTC elements, good heat dissipation is essential for the operation of the PTC heating devices with a good degree of efficiency.
The feed guide can also be provided in the longitudinal groove. The PTC heating device can have a locking web provided on its underside which engages in the longitudinal groove and interacts with the feed guide for centering the PTC heating device.
Further details and advantages of the present invention shall become apparent from the following description of an embodiment in combination with the drawing, in which:
The housing lower part 102 is trough-shaped and surrounds a heating chamber 106, to which inlet and outlet ports 110 projecting from a base 106 are provided. These inlet and outlet ports 110 are formed integrally with the housing lower part 102 by way of injection molding.
The inlet and outlet ports 110 project beyond the base 108. They extend at a right angle from a planar surface formed by the base 106.
Illustrated between the housing upper part 104 and the housing lower part 102 in the figure is a plurality of PTC heating devices 112 which comprise PTC elements that are provided within the PTC heating devices 112 and contacted by way of conductor tracks in an electrically conductive manner. The conductor tracks are electrically connected by way of contact strips 114. The PTC heating devices 112 are held in a plug-connected manner in receptacles 116 of a partition wall 117 of the housing upper part 104 provided for this purpose. Details of this configuration are described in EP 3 334 242 A1 which originates from the applicant.
Further elements of the heating device 100 are shown between the housing lower part 102 and the housing upper part 104. A high-voltage plug element is denoted by reference numeral 118 and screwed to the housing lower part 104 and comprises contact elements projecting into a connection chamber 120 of the housing upper part 104. These contact elements are electrically connected to a printed circuit board denoted by reference numeral 12 which can be accommodated in the trough-shaped housing upper part 104. Reference numeral 124 denotes a seal which seals the housing lower part 102 against the housing upper part 104 and thus the heating chamber 106.
A holding element 126 provided with elastic projections has the individual PTC heating devices 112, each of which has individually accommodating heating device receptacles 128 which claw into the outer circumferential surface of the individual PTC heating devices 112. In the assembled state, the holding element 126 is also connected to the housing lower part 104 in a positive-fit and/or force-fit manner.
A contact device 130 is arranged above the housing upper part 104 and below the printed circuit board 122 and electrically connects all the contact strips 114 and groups individual PTC heating devices 112 to form heating circuits. An electrical connection between the contact device 130 and the printed circuit board 122 is established by contact strips 132 projecting from the contact device 130 Connected to the circuit board 142 and protruding therefrom is a control signal plug element illustrated by reference numeral 134. This control signal plug element 134 is screwed against the printed circuit board 122.
A further circumferential seal 136 and a control housing cover 138 with which the connection chamber 120 of the housing upper part 104 is covered and sealed are shown above the printed circuit board 122. The control housing cover 138 is made of metal in order to shield together with the housing upper part 104 against electromagnetic radiation which arises from the switching of the power current within the control housing 104, 136, 138. A support frame 140 is arranged between the control housing cover 138 and the printed circuit board 122 and supports compression elements 142 between itself and the printed circuit board 122 in order to, for example, press power transistors mounted on the printed circuit board 122 against cooling surfaces which are connected in a thermally conductive manner to cooling domes extended into the heating chamber 106. The cooling surfaces are connected to the power transistors in a thermally conductive manner.
After assembly, connecting rods 144 engage behind locking projections 145 which are provided on the housing lower part 102 and the housing upper part 104 in order to connect the two parts 102, 104 captively and in a positive-fit manner to one another. Details on this are described in EP 2 796 804 A1.
The control housing cover 138 together with the housing upper part 104 and the seal 136 forms a control housing 146. Due to their metallic materials, the control housing cover 138 and the housing upper part 104 form a shielding around the control device 148 which is accommodated in this control housing 146 and is substantially formed by the printed circuit board 122. A connection pin 150 protrudes from the control housing 146 in the direction of the plug elements 118, 134. This connection pin 150 is used to connect the metallic control housing 146 to a ground phase and is screwed to the control housing 146.
In
Disposed oppositely to the face surface 606 opposite thereto is a cooling dome 512 which is connected in a thermally conductive manner to a power transistor 308. For this purpose, one of the power transistors 308 respectively abuts against a cooling surface 510 which is exposed in the connection chamber 120 and which forms the end of the cooling dome 512 on the connection side. An inner surface 516 of the cooling dome 512 covers the corresponding face surface 606 of the PTC heating device 600 in a roof-shaped manner. It serves to deflect the flow of the fluid flow guided in the flow channel section 552 from one flow channel section 552 to the next flow channel section 552.
The design of the PTC heating devices 600 illustrated in
In the embodiment shown, the housing lower part 550 is made of plastic material.
As is further evident from
The PTC heating devices 600 are plug-connected in the receptacles 116. The PTC heating devices 600 with their contact strips 114 project into the connection chamber 106 and are there electrically connected to the contact device 130 which combines the various PTC heating devices 600 and their contact strips 114 to form heating circuits. The contact device 130 is in turn electrically connected to the printed circuit board 122 which forms the control device 148 of the embodiment.
The housing lower part 550 has a base 560 in which a longitudinal groove is recessed which is denoted in
Disposed in the region of the ends of the longitudinal groove 562 on both sides of the longitudinal groove 562 are feed guides 564 which taper conically in the direction of the base of the longitudinal groove 562 and are arranged in the longitudinal groove 562.
When the embodiment shown is assembled, the PTC heating devices 600 are each inserted into receptacles 116 associated with them which are recessed in the partition wall 117. A fluid-tight seal of the PTC heating device in this receptacle 116 arises due to a sealing collar formed on the housing of the PTC heating device 600. Only the contact strips 114 project into the connection chamber 120 and are electrically connected there. The frictionally engaged reception of the PTC heating devices 600 in the receptacle 116 is certainly sufficient during assembly and handling in order to hold the PTC heating devices 600 on the housing upper part 104.
The housing lower part 550 is then mounted. For this purpose, the housing lower part 550 is advanced in the direction toward the housing upper part 104. When approaching the housing lower part 550 and the housing upper part 104 to the final position of the assembled heating device, the locking web 614 is received between the feed guides 564 and is aligned and centered parallel to the longitudinal groove 562 during a further infeed motion due to the conical configuration of the feed guides 564 At the end of the infeed motion, the locking web 614 is received in the longitudinal groove 562.
The PTC heating devices 600 have a width b, the dimension of which is greater than the width B of the base area G. The PTC heating devices 600 are each aligned obliquely at an angle of approximately 45° to the boundary lines of the base area G. Effective PTC heating devices 600 with a relatively large heat-dissipating surface can then be accommodated in a relatively small housing 102; 104, 550. The oblique positioning also allows for a slightly parallelogram-like distortion of the base area G, so that the plug elements 118, 134 can be provided laterally beside the area occupied by the heating chamber 106 in the top view according to
Number | Date | Country | Kind |
---|---|---|---|
102019211795.3 | Aug 2019 | DE | national |
102019220590.9 | Dec 2019 | DE | national |