The present invention relates generally to electric heating modules, and more particularly to an electric heating module having a PTC (Positive Temperature Coefficient) heating element.
Electric heating devices are commonly used to warm body parts, in air conditioning, in motor vehicles, in industrial plants and the like. A conventional electric heating device comprises a base having at least one electric heating element supported on or adjacent thereto. The heating elements are generally of coiled wire or ribbon form, having electrical terminals at opposite ends thereof for connection to a power supply. A rod-like heat sensor is generally provided extending at least partly across the heating device and overlying the heating elements to sense the temperature of the electric heating device.
The electric heating elements are generally made of a metal which can endure high temperatures, such as nickel, chromium or the like. The electrical resistance of the heating elements is thus kept constant with varying temperature. During operation of the heating device, an electrical current flows through the heating elements, whereby the heating elements generate heat. Due to the constant electrical resistance of the heating elements, initially the heating elements need a relatively longer time to warm up to a predetermined temperature. However, after reaching the predetermined temperature the current continues to supply to the heating elements, whereby the heating device may be overheated. Thus such a heating device is both unsafe and has a low energy conversion efficiency.
Therefore, there is a need for an electric heating module which has a better energy conversion efficiency and for which there is not a danger of overheating.
According to a preferred embodiment of the present invention, an electric heating module comprises an electric heater, a heat pipe having an evaporating section thermally attached to the electric heater and a condensing section, and at least one heat radiator thermally attached to the condensing section of the heat pipe. The electric heater comprises a pair of electrode plates parallel to each other and a heating element sandwiched between and electrically connecting the electrode plates. An electrically insulating and thermal conductive insulation frame encloses the electrode plates therein so as to electrically insulate the electric heater from the heat radiator. Due to the non-linear PTC heating element of the heating device, the electric heater can rapidly heat to and stay at a desired stable temperature. The heat transfer efficiency by phase change of working fluid of the heat pipe is hundred times more than that of other mechanisms, such as heat conduction or heat convection without phase change. Therefore the heat pipe can transfer heat from the electric heater to the heat radiator rapidly. Thus this electric heating module enhances the energy conversion efficiency, and improves the security and working life of the heating device.
Other advantages and novel features of the present invention can be drawn from the following detailed description of a preferred embodiment of the present invention with attached drawings, in which:
Referring to
Referring to
The PTC heating element 16 is made of semi-conductive ceramic based on BaTiO3 (where Ba is barium, Ti is titanium and O is oxygen) composition and has an electric layer 162 coated on two opposite sides thereof for electrically contacting with the electrode plates 12, 14. The electric layers 162 are made of a material having an excellent electrical conductivity, such as metal, metal oxide, superconducting materials, etc. The metal oxide can be selected from one of ITO-based (where I is indium, and T is tin) materials or IZO-based (where I is indium, and Z is zinc) materials. The superconducting materials can be selected from one of the following materials: YBa2Cu3O7 (where Y is yttrium, and Cu is copper), LaSr2Cu3O7 (where La is lanthanum, and Sr is strontium) and their composites. The heating element 16 is formed in a flat rectangular shape. Alternatively, the heating element 16 can be manufactured in other forms, such as circular or donut-shaped. Because of the non-linear positive temperature coefficient of the heating element 16, electrical resistance of the PTC heating element 16 varies with its temperature. When the temperature of the heating element 16 is below the Curie point, the electrical resistance value slightly decreases as temperature rises. But when the temperature exceeds the Curie point, the resistance increases abruptly. The Curie point is the temperature at which the resistance of the heating element 16 begins to rise sharply and the resistance value is approximately twice the minimum resistance. The Curie point can be adjusted as required by changing the composition of the heating element 16.
An insulation frame 19 covers the electrode plates 12, 14 so as to insulate the electric heater 10 from the heat radiators 30, 40. The insulation frame 19 is made of electrical insulation material with excellent thermal conductivity, such as a ceramic substrate or polymer material. Thus the heat generated by the electric heater 10 can be conducted to the heat radiators 30, 40 quickly and reliably.
The heat pipe 20 is planar shaped and has planar shaped bottom and top outer surfaces which respectively thermally contact the first and second heat radiators 30, 40. The heat pipe 20 is a loop heat pipe and includes an evaporating section 22 and a condensing section 24. Usually a wick structure (not shown) is disposed on an inner wall of the heat pipe 20. The condensing section 24 includes a forwarding portion 26 and a returning portion 28. Together the evaporating section 22, forwarding portion 26 and returning portion 28 define a loop for circulating the working fluid of the heat pipe 20. It is well known that the heat transfer efficiency by phase change of liquid (i.e. from liquid to vapor) is better than other mechanisms, such as heat conduction or heat convection without phase change. It is also well known that heat absorbed by liquid having a phase change is hundred times more than that of the liquid without phase change. Therefore the heat pipe 20 is capable of transferring heat from the electric heater 10 to the heat radiators 30, 40 rapidly, thereby improving energy conversion efficiency of the electric heating module. The heat pipe 20 is a hermetically vacuum container, with the working fluid received therein. The working fluid in the evaporating section 22 absorbs heat from the electric heater 10 and becomes vapor. The vapor flows through the forwarding portion 26 and then the returning portion 28 of the condensing section 24, whereby the heat carried by the vapor is transmitted to the heat radiators 30, 40, and the vapor is condensed into liquid. The liquid is drawn back to the evaporating section 22 via the wick structure for a next thermal circulation.
Each of the first and second heat radiators 30, 40 includes a base 32, 42 and a plurality of fins 34, 44 respectively extending therefrom. The fins 34, 44 are parallel to each other and each of the fins 34, 44 is arc shaped. An arc shaped flow channel 35, 45 is formed between each pair of neighboring fins 34, 44 for channeling the airflow generated by a fan 50 (
In assembly, the heating element 16 is received in the slot 142 of the lower electrode plate 14. The inner surface of the lower electrode plate 14 electrically contacts the heating element 16. The upper electrode plate 12 covers the lower electrode plate 14 with an inner surface electrically contacting the heating element 16. The insulation frame 19 covers the electrode plate 12, 14 and encloses the PTC heating element 16 therein. Then the notch 39 of the first heat radiator 30 receives the electric heater 10 with the insulation frame 19 wrapped thereon. A bottom wall of the insulation frame 19 thermally attaches to the base 32 of the first heat radiator 30. The heat pipe 20 is received in the groove 38 of the base 32 of the first heat radiator 30. The evaporating section 22 of the heat pipe 20 thermally attaches to a top wall of the insulation frame 19. The bottom outer surface of the condensing section 24 of the heat pipe 20 thermally attaches to the base 32 of the first heat radiator 30. The second heat radiator 40 abuts the top outer surface of the heat pipe 20. Each hook 36, 46 of the first and second heat radiators 30, 40 engages with a corresponding hook 46, 36 of the other heat radiators 40, 30. Therefore the heat radiators 30, 40 lock with each other and sandwich the electric heater 10 therebetween. The bases 32, 42 of the first and second heat radiators 30, 40 thermally attach to the bottom and top outer surfaces of the heat pipe 20, respectively.
As shown in
It is understood that the invention may be embodied in other forms without departing from the spirit thereof. Thus, the present example and embodiment is to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Date | Country | Kind |
---|---|---|---|
2005 1 0035779 | Jul 2005 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5995711 | Fukuoka et al. | Nov 1999 | A |
6720536 | Bohlender | Apr 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20070000898 A1 | Jan 2007 | US |