The invention relates to an electric lamp, in particular a halogen incandescent lamp, having retaining pinches for the luminous element.
With this type of lamp, the luminous element is retained by means of funnel-like turned-in sections of the lamp vessel. For reasons of simplicity, these turned-in sections are also referred to as pinches below.
Such a lamp is known, for example, from the specification DE 40 08 367 A1. This document has disclosed a halogen incandescent lamp which has a pinch seal at one end and whose elongate luminous element extends in the direction of the longitudinal axis of the lamp and is held there by one or more pinches formed in the manner of funnels from the lamp vessel material. For this purpose, the pinches are oriented perpendicularly with respect to the lamp longitudinal axis. In one exemplary embodiment, the halogen incandescent lamp with a pinch seal at one end is incorporated in an outer bulb having an Edison screw base, for direct operation using the system voltage.
The specification U.S. Pat. No. 5,686,794 has disclosed a halogen incandescent lamp, whose elongate luminous element is axially centered using at least three pinches in the lamp vessel. In this case too, the pinches are oriented perpendicularly or radially with respect to the lamp longitudinal axis. Both lamps having a pinch seal at one end and tubular line lamps are disclosed.
The specification U.S. Pat. No. 6,724,135 B2 has disclosed a reflector lamp having a reflector and a halogen incandescent lamp using the bulb pinch technology. The pinches are formed perpendicularly with respect to the lamp longitudinal axis. The halogen incandescent lamp is introduced into the reflector coaxially with respect to the reflector axis.
The object of the present invention is to broaden the use and application possibilities for electric lamps using the bulb pinch technology.
This object is achieved by an electric lamp having
The pinches as such, as is already known from the prior art cited initially, are in the form of funnel-shaped turned-in sections of the lamp vessel. In contrast to the prior art, according to the invention, the pinches are, however, oriented essentially axially with respect to the longitudinal extent of the lamp (“axial pinches”), instead of perpendicularly with respect to the lamp longitudinal axis. The basic idea behind this is to align the luminous element of the lamp, usually an incandescent filament, possibly also wound several times and/or comprising a plurality of filament segments, essentially in an imaginary plane perpendicularly with respect to the lamp longitudinal axis, that is to say with respect to the direction of the lamp base and not essentially in the axial direction of the lamp, as in the prior art. This makes it possible, according to the invention, for the light to be emitted from the beginning predominantly through the end side of the lamp, i.e. in the axial direction. In this case, it is irrelevant if the luminous element is not completely or quite precisely stretched in one plane, for example if the individual filament segments are oriented obliquely with respect to the imaginary plane. It is merely critical that the principal extent of the luminous element is overall perpendicular with respect to the lamp longitudinal axis, i.e. for it to be at all possible for the luminous element to be retained by means of axial pinches.
In any case, in the cited prior art the light is initially predominantly emitted radially, on the other hand, owing to the axial arrangement of the incandescent filaments. For the light to be emitted predominantly axially, a separate reflector is required in the case of previous lamps using the bulb pinch technology, such as in the case of the reflector lamp in U.S. Pat. No. 6,724,135 B2 cited above.
Owing to the above-explained concept, the invention is in particular also suitable for high-volt (HV) halogen incandescent lamps which can be operated directly using the system voltage. The plurality of filament segments usually required for this purpose are essentially stretched in an imaginary plane perpendicular to the lamp longitudinal axis, for example in the form of a polygon which is open on one side, in any case such that the two inner power supply lines can be connected to the luminous element at a suitable distance from one another. In general, an incandescent filament which has filament segments with the number N is preferably stretched in the form of an N+1-sided polygon, which is open on the side of the two power supply lines of the incandescent filament.
The lamp vessel is preferably bowl-shaped with an overall planar or else slightly concave or convex end face for emitting the light. The axial pinches extend, starting from the end face, up to the incandescent filament in order to at least partially fix said incandescent filament. In this regard, the end face is strictly speaking not completely planar but is locally uneven owing to the turned-in pinches. For reasons of simplicity, the end face is in this case referred to as overall planar, however.
The number of pinches typically required depends on the length of the filament or on the number of filament segments. In each case one pinch is preferably provided between two adjacent filament segments and in each case one pinch is provided at the two power supply lines of the filament. If the number of filament segments is N, there are consequently N+1 pinches. In the case of an incandescent filament having, for example, a total of three filament segments, in each case one pinch is preferably provided at the two filament power supply lines and in each case one further pinch is preferably provided between the two connecting sections of the three segments, i.e. in total four pinches.
For this purpose, an uncoiled connecting section or a connecting section having a single coil can, for example, be embedded or fused in between the filament segments in the respective pinch tip in the region of a pinch. Alternatively, the incandescent filament is provided with in each case one secondary winding in the region of the pinches, with which secondary windings the incandescent filament is retained fixedly at the pinch tips, possibly also in combination with being fused in. Alternatively, the incandescent filament can also be, as it were, stretched via the pinches by the incandescent filament being passed, under stress, to the outside around the pinches. In the case of compact lamps, the pinches can also partially overlap one another, in particular in the region of the connection between the incandescent filament and the inner power supply lines, which extend relatively close to one another, for reasons of space.
The bowl-shaped lamp vessel preferably has a conical section, which tapers in the direction of the base and is preferably provided with a reflective coating and thus acts as an optical reflector. Since the contour of the lamp vessel is thus finally similar to an axial reflector, the light emission is as a result assisted in the axial direction. The axial arrangement of the pinches on the end face of the lamp vessel has the advantage in this context that the reflector coating remains completely planar and thus optically undisturbed, which favors uniformity of the axially emitted light distribution.
This achieves a very compact reflector lamp, in particular for high-volt operation. In this context, it is advantageous to provide the lamp according to the invention with a lamp base which is formed from the material of the lamp vessel, usually glass, for example with a G9 base or another type of base.
The invention will be explained in more detail below with reference to exemplary embodiments. In the figures:
a shows a partially sectioned side view of a reflector lamp according to the invention,
b shows a partially sectioned side view, rotated through 90° compared with
c shows an end view of the reflector lamp according to the invention shown in
d shows a cross-sectional illustration of the reflector lamp according to the invention shown in
a shows a partially sectioned side view of one variant of the reflector lamp according to the invention shown in
b shows a partially sectioned side view, rotated through 90° compared with
Reference will be made below to
A partially sectioned side view and a partially sectioned side view rotated through 90° with respect thereto of a variant 12 of the reflector lamp shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2005 019 829 | Apr 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2116722 | Downer | May 1938 | A |
3080497 | Noel et al. | Mar 1963 | A |
5146134 | Stadler et al. | Sep 1992 | A |
5896004 | Feldman et al. | Apr 1999 | A |
5932955 | Berger et al. | Aug 1999 | A |
5962973 | Rice | Oct 1999 | A |
6075318 | Noll et al. | Jun 2000 | A |
7119484 | Damm et al. | Oct 2006 | B2 |
7341469 | Frye | Mar 2008 | B2 |
7397192 | Damm et al. | Jul 2008 | B2 |
20040120145 | Damm et al. | Jun 2004 | A1 |
20050093454 | Fridrich | May 2005 | A1 |
20060238121 | Stark | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
40 08 367 | Sep 1991 | DE |
195 28 686 | Feb 1997 | DE |
101 46 877 | Apr 2003 | DE |
0 446 460 | Sep 1991 | EP |
446458 | Sep 1991 | EP |
0 616 359 | Sep 1994 | EP |
453 758 | Jul 1913 | FR |
07320698 | Dec 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20060244383 A1 | Nov 2006 | US |