This invention relates to electric latch retraction devices that operate vertical rod door latches. More specifically, it relates to an electric latch retraction device that drives a vertical rod door latch to latch and unlatch a door and which cooperates with a mechanical latch actuator, such as a lever handle door trim or exit device, connected to mechanically drive the same vertical rod door latch mechanism.
Vertical rod door latches are door latches commonly used in commercial or public buildings where the door latches are located at the top and/or bottom edge of the door. Vertical rod door latches typically include one or more latches or catches that extend upward out of the top and/or downward from the bottom edge of the door into a corresponding opening in a strike located in the door frame above the door or on the floor below the door.
The latches are most commonly driven into and out of engagement with the corresponding strike by vertical rods extending from an actuator located near the midpoint of the door to the top and/or bottom latches. The vertical rods extending from the actuator may be hidden inside the door or located on the surface of the door and they may drive the latches at each point with either a pulling or pushing motion.
Although stiff vertical rods capable of applying a push or pull force to the latch points are the most common method of driving the latches, for the purpose of this application, the term “vertical rod door latch” is not intended to be limited to designs using only stiff vertical rods. The term is intended to include other mechanical drive mechanisms for driving the top and bottom latch points, such as cable drive systems and any other method by which an actuator mounted on the door can apply force to mechanically drive latch points at the top and/or bottom edges of the door.
The actuator most commonly used to drive the latch points of a vertical rod door latch is a pushbar or pushrail type exit device. An “exit device” is a lock mechanism operated from the inside of an exit door through the use of a crossbar, pushbar, pushrail, panic bar or paddle actuator that moves towards the exit door to retract the latches when pressure is applied.
The pushbar is typically spring biased away from the exit door. When horizontal pressure is applied, the pushbar moves horizontally in towards the mounting rail, compresses the biasing springs and retracts the latch rods at the top and/or bottom to unlatch the exit door. Exit devices of this general type may be seen in U.S. Pat. Nos. 4,384,738; 5,531,492 and U.S. Design Pat. No. 279,647 all of which are assigned to Sargent Manufacturing Company, the assignee of the present patent application.
Conventional exit devices have sufficient room inside the housing for the exit device to allow motorized drive units to be mounted therein. The motorized drive can emulate the pushing motion needed to retract the latch rods either by driving the pushbar directly or by driving the vertical rods through other linkages in the exit device. Such motorized drives allow the vertical rod exit device to be operated in response to an electrical signal. U.S. Pat. No. 7,883,123, which is assigned to Sargent Manufacturing Company, the assignee of the present patent application, shows such an exit device drive system intended for mounting within the housing of a pushbar operated exit device.
Electrical control to retract the latches is desirable when the door is to be latched and unlatched by an access control system, which may incorporate a card reader, keypad, proximity detector, fingerprint or other biometric identification system, etc. that is mounted adjacent to or on the door to provide access control. Other applications for electrical latch retraction include fire control systems for a building that operate door latches remotely or for pushbutton controls mounted adjacent to the door for access by the disabled.
Although it is known to provide electric latch retraction of a vertical rod door latch by adding a motorized drive within a pushbar type exit device housing, there is a need for electric latch retraction when the vertical rod door latch is to be driven by a lever handle trim or a mechanical drive not designed with an integrated electrical drive system. The housing of most lever handle trim units does not provide sufficient room for a motor drive system to be installed, such as the drive system seen in U.S. Pat. No. 7,883,123. There is a need for an electric latch retraction device that has a separate housing and is mounted independently from the mechanical drive for the vertical rod latch.
There is also a need for an electric latch retraction system that can be added to an existing mechanical, non-electrified, vertical rod design. Such a design could be used regardless of whether the vertical rod door latch is mechanically driven by an exit device, a lever handle trim or any other type of handle or trim capable of driving the vertical rod latch. It would be desirable to be able to supply such an independent electric latch retraction design at the time of purchase with an existing mechanical actuator, such as an exit device or handle trim, or to be able to install the electric latch retraction device later in the field, where it is to be connected as a retrofit to drive a previously installed mechanically operated vertical rod door latch.
A problem with any separately installed electric latch retraction device is that it must be adjusted for proper operation. It would be desirable for the electric latch retraction device to automatically adjust to compensate for variations in the position of the installed electric latch retraction device or the relative position of the installed vertical rod door latch.
It would also be desirable to be able to eliminate the need for functional lever trim on the door. By mounting an electric latch retraction device in a separate housing and providing electrical control to operate the vertical rod door latch, the trim at the midpoint of the door does not need to mechanically operate or connect to the vertical rod door latch and does not need to perform any door latching or locking functions.
The present invention is directed to an electric latch retraction device for driving a vertical rod door latch that includes a pivoting retraction lever having an end adapted to drive the vertical rod door latch, a limit switch mounted to detect a position of the retraction lever at a pivoting limit of motion thereof and provide a limit signal indicative thereof, a linear sensor providing a vertical position signal corresponding to a vertical position of the pivoting retraction lever, a linear driver mounted to vertically drive the pivoting retraction lever and a control circuit connected to drive the linear driver in vertical motion and connected to receive the limit signal and the vertical position signal, the control circuit driving the pivoting retraction lever in vertical motion and determining the vertical position of the pivoting retraction lever when the limit signal is actuated to detect installation position errors of the electric latch retraction device relative to the vertical rod door latch.
In one aspect of the invention, the linear sensor is a Hall effect sensor.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the preferred embodiment of the present invention, reference will be made herein to
Referring to
The vertical rods 16, 18 are mechanically linked in a conventional manner to move together, but in opposite directions through vertical rod connection assembly 20. When the upper vertical rod 16 moves down, the lower vertical rod 18 moves up. The lower vertical rod 18 drives a lower latch having a pin 22 that enters a corresponding strike or opening typically mounted in the floor. The upper latch is provided with a latch assembly 24 and an upper pin 26 that also enters a corresponding strike or opening in the door frame at the top.
In the vertical rod door latch illustrated, the upper latch assembly 24 acts to hold the pins 22 and 26 in the retracted position when the door is open and to release them when the door is closed using sensing pin 25. The vertical rods 16, 18 are preferably located inside the door so that they are hidden. By rotating handles 10 or 12 the vertical rods can be moved to unlatch the upper and lower latches by retract the upper and lower pins 26, 22 from their respective strike openings. This unlatches the door from the door frame and floor and allows the door to open.
Those familiar with this art will recognize that the vertical rod system described so far is substantially conventional and is known in the art. The vertical rod assembly from the upper latch and pin 26 through the connection assembly 20 to the lower latch and pin 22 may be operated from the connection assembly 20 by any of several known types of exit devices or lever handles. It is also possible to omit the lower vertical rod 18 and the lower pin 22 or to add a midpoint latch with a pushbar exit device.
However, using conventional components, it is not possible to add electric latch retraction except by adding an electrically operated exit device to replace the interior lever handle 12. There is insufficient space within the lever handle trim housing to accommodate electric latch retraction. Moreover, lever handles may be preferred in many situations, or it may be preferred to use pulls instead of rotating handles.
The present invention accommodates these needs, which cannot be met with conventional latches, and allows retrofitting, by providing a separately mounted independently housed and independently driven electric latch retraction device 30. The electric latch retraction device 30 cooperates with and does not interfere with the mechanical latch retraction components described above.
The electric latch retraction device 30 is a motorized drive unit that in one aspect uses a linear actuator capable of driving the vertical rods under remote control. Specifically, electronic latch retraction device 30 is mounted on the exterior of the door, typically at a point above the connection assembly 20. The electric latch retraction device 30 includes a pivoting retraction lever 38 having a right end 40 and a left end 44. The right end 40 drives the upper rod 16 down by contacting a metal plate 42 attached to the vertical rod 16. As the upper rod 16 moves down, the lower rod moves up due to the linkage and interconnection therebetween at the connection assembly 20.
Referring to the remaining drawings, and particularly
Referring to
The retraction lever 38 extends from the exterior of the door thorough an opening in the surface of the door and into the interior of the door where the right side 40 of the retraction lever is in position to contact metal plate 42 attached to the vertical rod 16. A spring 60 (see
When downward force is applied to the metal plate 42, the upper pin 26 is refracted downward and the lower pin 22 is retracted upward. This downward force on the plate 42 is applied by the stepper motor 32 and more specifically by the shaft 34 which pulls down on the lead screw anchor 36, which then pulls down on the retraction lever 38.
As the shaft forming the lead screw anchor 36 moves down, the retraction lever 38 initially tilts or pivots as it rotates around the shaft 37 in the lead screw anchor 36. During this initial pivoting action the vertical rods do not move. Instead, the left side 44 of the retraction lever 38 initially moves down a short distance until it reaches a limit. Limit switch 46 is mounted to the lead screw anchor and is located at the limit of travel of the pivoting retraction lever. As the left side 44 of the retraction lever reaches the limit, it contacts and actuates limit switch 46 to sense when the left side 44 has reached the predefined limit.
The limit switch 46 is connected via a flexible ribbon connection 72 to a control circuit 51 in the form of a microcontroller mounted on a circuit board. Microcontroller circuit board 51 includes a microcontroller, a Hall effect sensor, and a power system, as well as connectors for connecting to the limit switch, an external control system, and the linear actuator.
Prior to the point where the left side 44 of the retraction lever 38 contacts limit switch 46, motion of the lead screw anchor 36 and the retraction lever 38 causes the left side 44 of the retraction lever 38 to move down and the right side 40 of the retraction lever 38 to remain stationary in contact with plate 42. Spring 60 is compressed during this initial motion as the retraction lever pivots counterclockwise about the lead screw anchor 36. The upward force applied by spring 60 on the left side 44 of the refraction lever is insufficient to force the right side 40 down or to operate the vertical rods of the vertical rod door latch system.
However, after the left side 44 of the retraction lever 38 contacts limit switch 46, the left side 44 is unable to move any further down and the right side 40 begins to move down. As the stepper motor drive continues, the lead screw anchor 36 and the retraction lever 38 continue to move down. The lead screw anchor 36 and the shaft 37 move down in slot 39. The retraction lever 38 rotates clockwise about the shaft 37. This drives the plate 42 and the upper vertical rod 16 down to unlatch the vertical rods. In the illustrated vertical rod system, once the vertical rod 16 has moved down ½″ the top and bottom latches are known to be fully retracted.
It will be understood that the housing 50 and the baseplate 41 are mounted to the surface of the door with the screws, as shown in
If the electric latch retraction device 30 is installed very high relative to plate 42, the lead screw anchor will have to move so far down before the left side of the refraction lever reaches its limit that there is no remaining travel to operate the vertical rods the required ½″. Similarly, if the electric latch retraction device 30 is installed very low relative to plate 42, the left side of the retraction lever will already be pushed down into contact with its lower limit and downward force may already be applied to plate 42. If the installation of the electric latch retraction device 30 is so low that the plate 42 is already partially driven down, the electric latch retraction device will be unable to move upwards to fully release the vertical rods to operate normally. They will always be in a partially actuated condition.
To address this problem, the electric latch retraction device is provided with an auto adjustment feature. The auto adjustment feature relies partially upon the limit switch 46 and partially upon a Hall effect sensor 62 that monitors the position of the lead screw anchor 36 by detecting the vertical position of magnet 64 mounted to the lead screw anchor 36.
The operation of the device may be described as follows. Initially, the electronic latch retraction device is in the position shown in
When the system is first installed, it must be installed such that the tilting or pivoting motion of the retraction lever 38 has the left end 44 disengaged from the limit switch 46 so that it is possible for the shaft 34 to move down under microprocessor control before switch 46 is contacted and before plate 42 begins to move down.
If the electric latch retraction device 30 is inadvertently installed too low on the door such that the switch 46 is already engaged by end 44 of the retraction lever 38, the microcontroller will detect this. The microcontroller is programmed at initial startup to detect this incorrect installation as described above where the limit switch 46 is already actuated.
On the other hand, if the electric latch retraction device 30 is inadvertently installed too high on the door it is possible that there will not be the required 1/2″ of travel required after the switch has fired. To detect this type of installation error, the Hall effect sensor 62 signals the microcontroller of the circuit board 51 so that the vertical position of magnet 64 on the lead screw anchor 36 can be monitored. The electric latch retraction device must be able to drive the plate 42 downward at least one half inch after the limit switch 46 has been actuated. The microcontroller can detect the vertical position of the lead screw anchor 36 at the point when switch 46 is actuated and will know from that detection if one half inch of additional travel is available in slot 39. This is referred to as the auto adjustment feature of the present invention.
If ½″ (approximately 12.5 mm) of additional travel is not remaining, there is an installation error that must be corrected before proper operation can be assured.
The electronic latch retraction device 30 is provided with a separate escutcheon or cover 50. A wire 70 is provided for connection to the control system, which signals when the vertical rod latch system is to be actuated. The microcontroller circuit board 51 is preferably fixed relative to the door while the limit switch 46, which is connected to the microcontroller circuit board 51, moves with the lead screw anchor 36.
Spring 74 acts to drive the lead screw anchor 36 and lead screw 34 upwards to the upper limit when power is removed from the device so that it starts in the position seen in
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
Thus, having described the invention, what is claimed is:
This application claims priority to International Application No. PCT/US2013/074593 filed Dec. 12, 2013, which claims priority to U.S. Provisional Application No. 61/737,475 filed Dec. 14, 2012, now abandoned.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/074593 | 12/12/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61737475 | Dec 2012 | US |