Information
-
Patent Grant
-
6316878
-
Patent Number
6,316,878
-
Date Filed
Tuesday, May 2, 200025 years ago
-
Date Issued
Tuesday, November 13, 200123 years ago
-
Inventors
-
-
Examiners
Agents
- Birch, Stewart, Kolasch & Birch, LLP
-
CPC
-
US Classifications
Field of Search
US
- 315 50
- 315 52
- 315 71
- 315 73
- 315 74
- 315 94
- 315 104
- 315 106
- 315 179
- 315 185 R
-
International Classifications
-
Abstract
The electric-light bulb is capable of limiting an inrush current and automatically periodically changing brightness. In the electric-light bulb, a filament is provided in a bulb body. A resistance is provided in the bulb body and connected to the filament in series. A thermoswitch is provided in the bulb body and connected to the resistance in parallel. The thermoswitch includes a bimetal element and contact points. The bimetal element is deformed by heat radiated from the filament and closes the contact points when temperature of the bimetal element reaches prescribed temperature so as to short the resistance.
Description
BACKGROUND OF THE INVENTION
The present invention relates to an electric-light bulb, more precisely relates to an electric-light bulb, which is capable of automatically adjusting an electric current passing through a filament.
A conventional electric-light bulb is shown in
FIGS. 7A and 7B
. A base
52
is provided to a glass bulb body
54
. A pair of lead lines
56
a
and
56
b
are provided in the bulb body
54
and vertically extended from a pitch
58
with a separation. A filament
60
is spanned between upper ends of the lead lines
56
a
and
56
b
. The base
52
acts as terminals for supplying an electric current to the lead lines
56
a
and
56
b.
When the electric current is supplied to the lead lines
56
a
and
56
b
via the base
52
, the filament
60
is red-heated by the electric current supplied and radiates light, so that the electric-light bulb
50
is turned on.
In the room temperature, resistance of the filament
60
is low, so an inrush current, which is 13-16 times as great as a rated current, instantaneously passes through the filament
60
when the electric-light bulb
50
is turned on. By turning on and off the electric-light bulb
50
, a great load is applied to the filament
60
, so that a span of life of the electric-light bulb
50
must be shorter.
In the case of an electric-light bulb which is used at a place where the electric-light bulb cannot be easily exchanged, etc. and which must have a long span of life, a resistance (not shown) is provided in a bulb body and connected to a filament in series so as to limit intensity of electric current passing through the filament. Further, a thermistor, whose resistance is reduced when temperature of the filament rises, is provided so as to limit the inrush current passing through the filament.
The conventional electric-light bulbs, which include various types of bulbs in which filaments radiate light, are used for decorating show windows, Christmas trees, etc. and calling people's attention at construction sites, etc. Further, in some cases, a plurality of electric-light bulbs are connected and automatically turned on and off.
To automatically turned on and off the electric-light bulb, a bimetal element is provided in a bulb body and connected to a filament in series. The bimetal elements turns on and off the electric-light bulb as a thermoswitch.
In an initial state, temperature in the bulb body is low, so contact points of the thermoswitch are closed by the bimetal element. An electric current can be supplied to the filament.
When the filament radiates heat and temperature of the bimetal element reaches prescribed temperature, the contact points are opened, so that the electric current passing through the filament is stopped.
By stopping the current supply, the temperature in the bulb body gradually goes down, then the contact points are closed again and the electric current can be supplied to the filament again.
By repeating above described actions, the electric-light bulb can be automatically turned on and off.
However, the conventional electric-light bulb has following disadvantages.
Firstly, in the case of the electric-light bulb having the thermistor for limiting the inrush current, manufacturing cost must be increased because the thermistor is expensive.
Secondly, in the case of using the electric-light bulbs for decorating windows, etc. and calling attention, the conventional electric-light bulbs can be merely turned on and off. These days, electric-light bulbs, which is capable of changing brightness, are required so as to more effectively decorating or calling attention. But the conventional electric-light bulbs cannot automatically change their brightness.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an electric-light bulb capable of automatically control an electric current passing through a filament so as to limit an inrush current.
Another object of the present invention is to provide an electric-light bulb capable of automatically periodically changing brightness.
To achieve the objects, the present invention has following basic structures.
A first basic structure of the electric-light bulb of the present invention comprises:
a bulb body;
a filament being provided in the bulb body;
a resistance being provided in the bulb body, the resistance being connected to the filament in series; and
a thermoswitch being provided in the bulb body, the thermoswitch being connected to the resistance in parallel, the thermoswitch including a bimetal element and contact points,
wherein the bimetal element is deformed by heat radiated from the filament and closes the contact points when temperature of the bimetal element reaches prescribed temperature so as to short the resistance.
With this structure, the temperature of the bimetal element is low and the contact points of the thermoswitch are closed when the electric-light bulb is turned on. Namely, the resistance, which is connected to the filament in series, is not shorted, so an inrush current can be limited. By limiting the inrush current, a span of life of the electric-light bulb can be extended. Since the resistance is not shorted, a brightness of the electric-light bulb is low. When the temperature in the bulb body reaches the prescribed temperature, the resistance is shorted by the bimetal element, so that the brightness of the electric-light bulb is made higher. After the brightness is made higher, the high Brightness State can be continued as far as the electric current is supplied. The bimetal element is inexpensive, so manufacturing cost of the electric-light bulb can be reduced.
A second basic structure of the electric-light bulb of the present invention comprises:
a bulb body;
a filament being provided in the bulb body;
a resistance being provided in the bulb body, the resistance being, connected to the filament in series; and
a thermoswitch being provided in the bulb body, the thermoswitch being, connected to the resistance in parallel, the thermoswitch including a bimetal element and contact points,
wherein the bimetal element is deformed by heat radiated from the filament and opens the contact points when temperature of the bimetal element reaches prescribed temperature so as to reduce an electric current passing through the filament by the resistance, and
wherein the bimetal element returns to an initial state and recloses the contact points after the contact points are opened and the heat radiated from the filament is reduced.
With this structure, the contact points of the thermoswitch are closed until the temperature in the bulb body reaches the prescribed temperature, so that the resistance is shorted and the electric current is supplied to the filament. Thus, the brightness of the electric-light bulb is made high. When the temperature of the bimetal element reaches the prescribed temperature, the bimetal element deforms and opens the contact points. By opening the contact points, the electric current passing through the filament is limited by the resistance, so that the brightness of the electric-light bulb is made lower. By limiting the current passing through the filament, the temperature in the bulb body goes down. When the temperature reaches to the prescribed temperature, the bimetal element returns to an initial state, so that the contact points are closed again and the brightness of the electric-light bulb is made high again.
The current passing through the filament can be automatically periodically changed, so that the electric-light bulb can alternately change the brightness. With this action, the electric-light bulb can effectively decorate windows, etc. and effectively call attention. Since the current intensity is always changed, the filament is not overloaded and a durability of the electric-light bulb can be improved.
A third basic structure of the electric-light bulb of the present invention comprises:
a bulb body;
a filament being provided in the bulb body;
a resistance being provided in the bulb body, the resistance being connected to the filament in series;
a first thermoswitch being provided in the bulb body, the first thermoswitch being connected to the resistance in parallel, the first thermoswitch including a first bimetal element and first contact points; and
a second thermoswitch being provided in the bulb body, the second thermoswitch being connected to the resistance in series, the second thermoswitch including a second bimetal element and second contact points,
wherein the first bimetal element and the second bimetal element are deformed by heat radiated from the filament, so that the first contact points are firstly opened so as to reduce an electric current passing through the filament by the resistance, then the second contact points are opened so as to stop the electric current passing through the filament, and
wherein the first bimetal element and the second bimetal element return to initial states, so that the first contact points are firstly reclosed, then the second contact points are reclosed.
The first and the second contact points are closed until the temperature of the first and the second bimetal elements reach the prescribed temperatures. In this state, the resistance is shorted and the electric current is supplied to the filament, so that the brightness of the electric-light bulb is made high. By the heat radiated from the filament, the first and the second bimetal elements deform. But the first bimetal element firstly opens the first contact points so as to stop shorting the resistance. In this state, the electric current passing through the filament is limited by the resistance, so that the brightness of the electric-light bulb is made lower. By properly setting a resistance value of the resistance, the temperature in the bulb body can gradually rise in spite of reducing calorific power of the filament with the current reduction. When the temperature of the bulb body further rises, the second contact points are opened later so as to stop supplying the electric current to the filament. By stopping the current supply, the electric-light bulb is turned off. Then, the temperature of the bulb body goes down and the first and the second bimetal elements return to the initial states, so that the first contact points are firstly reclosed, then the second contact points are reclosed. By closing the first and the second contact points, the electric current can be supplied to the filament again.
While the electric current is supplied, the current passing through the filament can be automatically periodically changed and turned off. Therefore, the electric-light bulb can repeatedly change states of; light; dark; and off. Namely, the electric-light bulb is capable of repeating the three states in that order, so that the electric-light bulb can effectively decorate windows, etc. and effectively call attention.
A fourth basic structure of the electric-light bulb of the present invention comprises:
a bulb body;
a filament being provided in the bulb body;
a resistance being provided in the bulb body, the resistance being connected to the filament in series;
a first thermoswitch being provided in the bulb body, the first thermoswitch being connected to the resistance in parallel, the first thermoswitch including a first bimetal element and first contact points; and
a second thermoswitch being provided in the bulb body, the second thermoswitch being connected to the resistance in series, the second thermoswitch including a second bimetal element and second contact points,
wherein the first bimetal element and the second bimetal element are deformed by heat radiated from the filament, so that the first contact points are firstly closed so as to short the resistance and increase an electric current passing through the filament, then the second contact points are opened so as to stop the electric current passing through the filament, and
wherein the first bimetal element and the second bimetal element return to initial states, so that the first contact points are firstly reopened, then the second contact points are reclosed.
The first contact points are opened and the second contact points are closed until the temperature of the first and the second bimetal elements reach the prescribed temperatures. In this state, the electric current is supplied to the filament via the resistance, so that the brightness of the electric-light bulb is made low. By the heat radiated from the filament, the first and the second bimetal elements deform. But the first bimetal element firstly closes the first contact points so as to short the resistance. In this state, the electric current passing through the filament is not limited by the resistance, so that the brightness of the electric-light bulb is made higher. When the temperature of the bulb body further rises, the second contact points are opened later so as to stop supplying the electric current to the filament. By stopping the current supply, the electric-light bulb is turned off. Then, the temperature of the bulb body goes down and the first and the second bimetal elements return to the initial states, so that the first contact points are firstly reopened, then the second contact points are reclosed. By returning the first and the second contact points to the initial states, the second contact points are reclosed, so that the electric current can be supplied to the filament again.
While the electric current is supplied, the current passing through the filament can be automatically periodically changed and turned off. Therefore, the electric-light bulb can repeatedly change states of: dark; light; and off. Namely, the electric-light bulb is capable of repeating the three states in that order, so that the electric-light bulb can effectively decorate windows, etc. and effectively call attention.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the present invention will now be described by way of examples and with reference to the accompanying drawings, in which:
FIG. 1
is an explanation view of an electric-light bulb of a first embodiment of the present invention;
FIG. 2
is an explanation view of an electric-light bulb of a second embodiment of the present invention;
FIG. 3
is an explanation view of an electric-light bulb of a third embodiment of the present invention;
FIG. 4
is a graph showing a relationship between the temperature of a bimetal element and an electric current passing through a filament in the electric-light bulb shown in
FIG. 3
;
FIG. 5
is an explanation view of an electric-light bulb of a fourth embodiment of the present invention;
FIG. 6
is a graph showing a relationship between the temperature of a bimetal element and an electric current passing through a filament in the electric-light bulb shown in
FIG. 5
;
FIG. 7A
is a front view of the conventional electric-light bulb;
FIG. 7B
is an explanation view of the conventional electric-light bulb; and
FIG. 8
is an explanation view of another example of a resistance.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
First Embodiment
An electric current passing through a filament of an electric-light bulb is controlled immediately after turning on the electric-light bulb so as to limit an inrush current passing through the filament.
A structure of the electric-light bulb
10
will be explained with reference to FIG.
1
. Elements, which constitute the conventional electric-light bulb
50
(see FIGS.
7
A and
7
B), are assigned the same numeric symbols and detail explanation will be omitted.
In
FIG. 1
, the base
52
is attached to the glass bulb body
54
. A pair of the lead lines
56
a
and
56
b
are vertically extended from the pitch
58
. The filament
60
is spanned between upper ends of the lead lines
56
a
and
56
b.
The electric-light bulb
10
is characterized by: a resistance
12
, which is connected to the filament
60
in series; and a thermoswitch
14
, which includes a thermoswitich connected to the resistance
12
in parallel. In the thermoswitch
14
, a bimetal element
14
a
opens and closes contact points
14
b
. The resistance
12
and the thermoswitch
14
are provided in the bulb body
54
. At the room temperature, the bimetal element
14
a
opens the contact points
14
b
. When temperature in the bulb body
54
raised, by heat radiated from the filament
60
, to a prescribed temperature, the bimetal element
14
a
deforms and closes the contact points
14
b.
Successively, action of the electric-light bulb
10
will be explained.
Before the electric-light bulb
10
is turned on, no electric current is supplied and the temperature in the bulb body is the room temperature. Therefore, temperature of the bimetal element
14
is also the room temperature, so the contact points
14
b
of the thermoswitch are opened. In this state, the resistance
12
is not shorted by the thermoswitch
14
.
When the electric-light bulb
10
is turned on, the electric current is supplied to the filament
60
via the resistance
12
. In the conventional electric-light bulb
50
, the inrush current passes the filament
60
until the temperature of the filament
60
raised to a prescribed temperature and a resistance value of the filament
60
is increased to a prescribed value. But, in the present embodiment, the inrush current is limited by the resistance
12
, so that deterioration of the filament
60
can be prevented and durability of the electric-light bulb
10
can be improved. Note that, in this state, the resistance
12
limits the electric current passing through the filament
60
, so the electric-light bulb
10
emits light with lower brightness.
The electric-light bulb
10
emits light, with the lower brightness, for a while, then heat radiated from the filament
60
rises the temperature of the bulb body
54
and the bimetal element
14
a
, so that the bimetal element
14
a
deforms or curves itself. When the temperature of the bimetal element
14
a
reaches a prescribed temperature, the contact points
14
b
are closed by the bimetal element
14
a
. With this action, the resistance
12
is shorted by the thermoswitch
14
, and the electric current passing through the filament
60
is not limited by the resistance
12
. Since the filament
60
has been heated, the resistance value of the heated filament
60
is great enough in comparison with that at the room temperature. Therefore, the inrush current can be properly limited despite the resistance
12
is shorted. By limiting the inrush current, the deterioration of the filament
60
can be prevented, and the span of life of the electric-light bulb
10
can made longer. Note that, in the state of shorting the resistance
12
, the electric-light bulb
10
emits light with higher brightness as well as the conventional electric-light bulb.
Once the electric-light bulb
10
emits light with the high brightness, the temperature of the bulb body
54
is heated, so the electric-light bulb
10
continuously emits light as far as the electric current is supplied.
Second Embodiment
The electric-light bulb of the second embodiment is capable of repeatedly changing the brightness by controlling the electric current passing through the filament. It can be effectively used for decorating and calling attention.
The second embodiment will be explained with reference to FIG.
2
. The basic structure of the electric-light bulb
16
of the second embodiment is the same as that of the first embodiment, so structural elements explained in the first embodiment are assigned the same numeric symbols and explanation will be omitted.
In the first embodiment, the contact points
14
b
of the thermoswitch
14
are closed at the room temperature, and they will be opened by the heat from the filament
60
. On the other hand, in the present embodiment, a thermoswitch
18
of the electric-light bulb
16
acts the other way. Namely, contact points
18
b
of the thermoswitch
18
is closed at the room temperature. When the temperature of the filament
60
rises to a prescribed temperature, a bimetal element
18
a
deforms, by the heat from the filament
60
, and closes the contact points
18
b.
When the contact points
18
b
are opened and the electric current passing through the filament
60
is limited by the resistance
12
, the filament
60
is capable of continuously radiating heat but calorific power of the filament
60
steeply goes down, so that the temperature of the bimetal element
18
a
also goes down. Since the temperature of the bimetal element
18
a
goes down, the bimetal element
18
a
returns to the initial state and closes the contact points
18
b
. Thermocharacteristics of the bimetal element
18
a
and a resistance value of the resistance
12
are selected so as to execute above described function.
Successively, the action of the electric-light bulb
16
will be explained.
At the beginning, no electric current is supplied to the electric-light bulb
16
, so the temperature of the bulb body
54
and the bimetal element
18
a
, which is accommodated in the bulb body
54
, are the room temperature. Therefore, the bimetal elements
18
a
closes the contact points
18
b
of the thermoswitch
18
, and the resistance
12
is shorted by the thermoswitch
18
.
By supplying the electric current to the electric-light bulb
16
, the electric current passes through the filament
60
, so that the electric-light bulb
16
emits light with high brightness as well as the conventional electric-light bulb.
After a while, the temperature of the bulb body
54
and the bimetal elements
18
a
are raised, so that the bimetal element
18
a
deforms or curves itself. Upon reaching the prescribed temperature, the deformed bimetal element
18
a
closes the contact points
18
b
. By closing the contact points
18
b
, the electric current passing through the filament
60
is limited by the resistance
12
, so that the calorific power of the filament
60
goes down. Thus, the electric-light bulb
16
emits light with lower brightness.
Since the calorific power of the filament
60
steeply goes down, the temperature of the bulb body
54
and the bimetal element
18
a
go down. Since the temperature of the bimetal element
18
a
goes down, the bimetal element
18
a
returns to the initial state and closes the contact points
18
b
again. By closing the contact points
18
b
, the resistance
12
is shorted by the thermoswitch
18
, so that the electric-light bulb
16
emits light with high brightness again and the temperature of the bulb body
54
is raised again.
While the electric current is supplied to the electric-light bulb
16
, the above described steps are repeated. Namely, current intensity of the electric current passing through the filament
60
is automatically periodically changed, so that the brightness of the electric-light bulb
16
can be repeatedly changed.
Third Embodiment
The electric-light bulb of the third embodiment is capable of repeatedly changing three states: a light state; a dark state; and a turn-off state.
The third embodiment will be explained with reference to FIG.
3
. The basic structure of the electric-light bulb
20
of the third embodiment is the same as that of the first and the second embodiments, so structural elements explained in the first and the second embodiments are assigned the same numeric symbols and explanation will be omitted.
In the third embodiment, as shown in
FIG. 3
, the electric-light bulb
20
includes the structural elements of the second embodiment and further includes another thermoswitch
22
, which is connected to the resistance
12
in series and whose contact points are opened and closed by a bimetal element.
There arc two thermoswitches
18
and
22
in the bulb body
54
. So, the thermoswitch
18
, which is connected to the resistance in parallel, is called the first thermoswitch; the thermoswitch
22
, which is connected to the resistance
12
in series, is called the second thermoswitch. The bimetal clement
18
a
of the first thermoswitch
18
opens and closes the contact points
18
b
; the bimetal element
22
a
of the second thermoswitch
22
opens and closes the contact points
22
b.
Thermocharacteristics of the thermoswitches
18
and
22
are mutually different. The first thermoswitch
18
is more thermosensitive than the second thermoswitch
22
. When the temperature of the bulb body
54
is raised by the heat from the filament
60
, the first thermoswitch
18
firstly acts to open the contact points, then the second thermoswitch
22
acts late. On the other hand, when the temperature of the bulb body
54
goes down too, the first thermoswitch
18
firstly acts to close the contact points, then the second thermoswitch
22
acts late. To have different thermocharacteristics, thickness of the first and the second bimetal elements
18
a
and
22
a
are mutually different, so that specific heat of the first bimetal element
18
a
is less than that of the second bimetal element
22
a
. Therefore, the first bimetal element
18
a
is more thermosensitive than the second bimetal element
22
a
. Further, cut-off temperature of the first bimetal element
18
a
is lower than that of the second bimetal element
22
a.
The bimetal elements
18
a
and
22
a
are designed to execute above described functions.
Successively, the action of the electric-light bulb
20
of the present embodiment will be explained with reference to
FIGS. 3 and 4
.
At the beginning, no electric current is supplied to the electric-light bulb
20
, so the temperature of the bulb body
54
is the room temperature. And, temperature T
1
of the first bimetal element
18
a
and temperature T
2
of the second bimetal element
22
a
are the room temperature. Therefore, the first bimetal element
18
a
closes the first contact points
18
b
of the first thermoswitch
18
, so that the resistance
12
is shorted by the first thermoswitch
18
. The second bimetal element
22
a
also closes the second contact points
22
b
of the second thermoswitch
22
, so that the electric current can be supplied to the filament
60
.
When the electric current is supplied to the electric-light bulb
20
, the resistance
12
is shorted by the first thermoswitch
18
and the electric current passes through the filament
60
, so that the electric-light bulb
20
emits light with high brightness (STEP
200
). This is the light state.
After a while, the temperature of the bulb body
54
and the bimetal elements
18
a
and
22
a
are raised. As described above, the first thermoswitch
18
, whose bimetal element
18
a
has higher thermosensitivity, firstly reaches Off-temperature T
OFF1
, so that the first contact points
18
b
are opened. Then, shorting the resistance
12
is stopped, and the electric current passing through the filament
60
is limited, so that the electric-light bulb
20
emits light with lower brightness (STEP
202
). This is the dark state.
Unlike the electric-light bulb
16
of the second embodiment, the resistance value of the resistance
12
is selected so as to gradually rise the temperature in the bulb body
54
while the resistance
12
limits the electric current passing through the filament
60
and the electric-light bulb
20
emits light with lower brightness.
The second thermoswitch
22
reaches Off-temperature T
OFF2
after the first contact points
18
b
of the first thermoswitch
18
are opened, so that the second contact points
22
b
of the second thermoswitch
22
are opened. Then, the electric current is not supplied to the filament
60
, and the electric-light bulb
20
is turned off (STEP
204
). This is the turn-off state.
After the electric-light bulb
20
is turned off, the temperature of the bulb body
54
and the bimetal elements
18
a
and
22
a
go down. Since the temperature of the bimetal elements
18
a
and
22
a
goes down, the bimetal elements
18
a
and
22
a
return to the initial states. But the temperature of the first bimetal element
18
a
reaches On-temperature T
ON1
and the first bimetal element
18
a
firstly returns to the initial state, so that the first contact points
18
b
are reclosed. In this state, the second contact points
22
b
are still opened, so no electric current is supplied to the filament
60
and the electric-light bulb
20
is still turned-off.
The temperature of the bulb body
54
and the second bimetal element
22
a
go down for a while. When the temperature of the second bimetal element
22
a
reaches On-temperature T
ON2
and the second bimetal element
22
a
returns to the initial state, so that the second contact points
22
b
are reclosed. Namely, the state returns to the state of STEP
200
. In this state, the electric current is supplied to the filament
60
and the electric-light bulb
20
emits light with the high brightness.
As far as the electric current is supplied to the electric-light bulb
20
from outside, the STEPS
200
-
204
are repeated, so that intensity of the electric current passing through the filament can be periodically changed. Namely, the electric-light bulb
20
can periodically repeat the dark state, the light state, and the turn-off state in order.
Fourth Embodiment
The electric-light bulb of the fourth embodiment is capable of repeatedly changing three states: a light state; a dark state; and a turn-off state.
The fourth embodiment will be explained with reference to FIG.
5
. The basic structure of the electric-light bulb
24
of the fourth embodiment is similar to that of the third embodiment, so structural elements explained in the third embodiment are assigned the same numeric symbols and explanation will be omitted.
In the third embodiment, the first contact points
18
a
of the first thermoswitch
18
are closed at the room temperature, and they are opened when the temperature of the first bimetal element
18
a
rises and reaches the prescribed temperature. On the other hand, in the fourth embodiment, as shown in
FIG. 5
, the electric-light bulb
24
includes the first thermoswitch
14
, which is the same as the thermoswitch
14
of the first embodiment and whose first contact points
14
b
are opened at the room temperature. When the temperature of the first contact points
14
b
are closed when the temperature of the first bimetal element
18
a
rises and reaches a prescribed temperature.
There are the first thermoswitch
14
and the second thermoswitch
22
are provided in the bulb body
54
. Note that, the first thermoswitch
14
is more thermosensitive than the second thermoswitch
22
. When the temperature of the bulb body
54
is raised by the heat from the filament
60
, the first thermoswitch
14
firstly acts to close the contact points, then the second thermoswitch
22
acts late. On the other hand, when the temperature of the bulb body
54
goes down too, the first thermoswitch
14
firstly acts to open the contact points, then the second thermoswitch
22
acts late.
Successively, the action of the electric-light bulb
24
of the present embodiment will be explained with reference to
FIGS. 5 and 6
.
At the beginning, no electric current is supplied to the electric-light bulb
24
, so the temperature of the bulb body
54
is the room temperature. And, temperature T
1
of the first bimetal element
14
a
and temperature T
2
of the second bimetal element
22
a
are the room temperature. Therefore, the first bimetal element
14
a
opens the first contact points
14
b
of the first thermoswitch
14
, so that the resistance
12
is not shorted by the first thermoswitch
14
. The second bimetal element
22
a
closes the second contact points
22
b
of the second thermoswitch
22
, so that the electric current can be supplied to the filament
60
.
When the electric current is supplied to the electric-light bulb
24
, the electric current passes through the filament
60
via the resistance
12
, so that the electric-light bulb
24
emits light with low brightness (STEP
300
).
After a while, the temperature of the bulb body
54
and the bimetal elements
14
a
and
22
a
are raised. As described above, the first thermoswitch
14
, whose bimetal element
14
a
has higher thermosensitivity, firstly reaches On-temperature T
ON1
, so that the first contact points
14
b
are closed. Then, the resistance
12
is shorted, and the electric current passing through the filament
60
is not limited, so that the electric-light bulb
24
emits light with higher brightness (STEP
302
).
The second thermoswitch
22
reaches Off-temperature T
OFF2
after the first contact points
14
b
of the first thermoswitch
14
are closed, so that the second contact points
22
b
of the second thermoswitch
22
are opened. Then, the electric current is not supplied to the filament
60
, and the electric-light bulb
24
is turned off (STEP
304
).
After the electric-light bulb
24
is turned off, the temperature of the bulb body
54
and the bimetal elements
14
a
and
22
a
go down. Since the temperature of the bimetal elements
14
a
and
22
a
goes down, the bimetal elements
14
a
and
22
a
return to the initial states. But the temperature of the first bimetal element
14
a
reaches Off-temperature T
OFF1
and the first bimetal element
14
a
firstly returns to the initial state, so that the first contact points
14
b
are reopened. By opening the first contact points
14
b
, the resistance
12
is not shorted. In this state, the second contact points
22
b
are still opened, so no electric current is supplied to the filament
60
and the electric-light bulb
24
is still turned-off.
The temperature of the bulb body
54
and the second bimetal element
22
a
go down for a while. When the temperature of the second bimetal element
22
a
reaches On-temperature T
ON2
and the second bimetal element
22
a
returns to the initial state, so that the second contact points
22
b
are reclosed. Namely, the state returns to the state of STEP
300
. In this state, the electric current is supplied to the filament
60
and the electric-light bulb
20
emits light with the low brightness.
As far as the electric current is supplied to the electric-light bulb
24
from outside, the STEPS
300
-
304
are repeated, so that intensity of the electric current passing through the filament can be periodically changed. Namely, the electric-light bulb
24
can periodically repeat the dark state, the light state, and the turn-off state in order.
In the above-described embodiments, a part or a whole of the lead line
56
b
, for example, may be used as the resistance
12
so as to simplify the structure of the electric-light bulb. Usually, a resistance value of the lead line
56
b
is lower than that of the filament
60
, which emits light, so as to effectively consume electric power at the filament
60
. In the case that the lead line
56
b
constitutes the resistance
12
, when the lead line
56
b
(the resistance) is connected to the filament
60
in series, the brightness of the filament
60
is lower than that of the filament
60
to which the resistance is not connected. The resistance value of the lead line
56
b
is selected to much reduce the brightness. For example, resistance of the lead line
56
b
, with respect to the resistance value “R” of the red-heated filament
60
, is 0.5R-2.0R.
The second thermoswitch
22
, which is connected to the filament
60
in series, may be attached to, for example, the other lead line
56
a
. Further, the second thermoswitch
22
may be fixed to or accommodated in the pitch
58
, which supports the lead lines
56
a
and
56
b.
In the above described embodiments, the resistance
12
is not a light emitting body and separated from the filament
60
, which is a light emitting body. The filament
60
has a resistance value, so a part of the filament
60
may be used as the resistance
12
. An example is shown in FIG.
8
.
In
FIG. 8
, a support member
26
, which supports a center part of the filament
60
, is used as an intermediate terminal. A left sub-filament
60
a
, whose resistance value is R
1
, is used as a normal filament; a right sub-filament
60
b
, whose resistance value is R
2
, is used as the resistance
12
.
The first thermoswitch
14
is connected to the right sub-filament
60
b
in parallel.
The action of the example shown in
FIG. 8
is the same as the first embodiment, so explanation will be omitted.
In the example shown in
FIG. 8
, no resistance body is provided in the bulb body
54
, so manufacturing cost can be reduced. The resistance values of the sub-filaments
60
a
and
60
b
can be changed by changing the position of the support member
26
. Therefore, the brightness of the filament
60
can be changed by changing the resistance values of the sub-filaments
60
a
and
60
b.
In the electric-light bulb shown in
FIG. 8
, the part of the filament
60
can be used as the resistance for limiting the inrush current. The bimetal element
14
a
can be actuated by the heat from the sub-filament
60
a
. The sub-filament
60
b
also radiates heat and light, so that the resistance value of the sub-filament
60
a
can be made low in a short time. And, the brightness of the sub-filament
60
a
can be supplemented by the light from the sub-filament
60
b
. When the sub-filament
60
b
limits the inrush current, the brightness is temporally made higher.
The electric-light bulb shown in
FIG. 8
is capable of changing the brightness according to change of pupils of men, which change with time.
The electric-light bulb of the second embodiment may have the support member
26
, which is capable of adjusting the supporting position.
By adjusting the intensity of the electric current passing through the filament, the temperature of the filament can be changed. Some filament materials cause a periodical change of the temperature with a change of the current intensity. If a thermocolor-paint, whose color changes with change of temperature, is painted on an inner or outer face of the bulb body
54
or mixed in the glass of the bulb body
54
, the brightness and the color of the electric-light bulb can be changed.
A thermochange-gas, whose color changes with change of temperature, may be filled in the bulb body
54
. In this case too, the brightness and the color of the electric-light bulb can be changed.
The resistance
12
may be a Nichrome wire (trademark), a manganese wire, the filament, etc.
The contact points of the thermoswitches are apt to be deteriorated by sparks, which are caused when the bimetal elements open and close the contact points. To restrict the deterioration of the contact points, an inert gas, e.g., nitrogen gas, or a mixed gas including the inert gas may be filled in the bulb body. Further, the contact points may be protected by coating with platinum alloy or gold.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Claims
- 1. An electric-light bulb, comprising:a bulb body; a filament being provided in said bulb body; a resistance being provided in said bulb body, said resistance being connected to said filament in series; a first thermoswitch being provided in said bulb body, said first thermoswitch being connected to said resistance in parallel, said first thermoswitch including a first bimetal element and first contact points; and a second thermoswitch being provided in said bulb body, said second thermoswitch being connected to said resistance in series, said second thermoswitch including a second bimetal element and second contact points, wherein said first bimetal element and said second bimetal element are deformed by heat radiated from said filament, so that said first contact points are firstly opened so as to reduce an electric current passing through said filament by said resistance, then said second contact points are opened so as to stop the electric current passing through said filament, and wherein said first bimetal element and said second bimetal element return to initial states, so that said first contact points are firstly reclosed, then said second contact points are reclosed.
- 2. An electric-light bulb, comprising:a bulb body; a filament being provided in said bulb body; a resistance being provided in said bulb body, said resistance being connected to said filament in series; a first thermoswitch being provided in said bulb body, said first thermoswitch being connected to said resistance in parallel, said first thermoswitch including a first bimetal element and first contact points; and a second thermoswitch being provided in said bulb body, said second thermoswitch being connected to said resistance in series, said second thermoswitch including a second bimetal element and second contact points, wherein said first bimetal element and said second bimetal element are deformed by heat radiated from said filament, so that said first contact points are firstly closed so as to short said resistance and increase an electric current passing through said filament, then said second contact points are opened so as to stop the electric current passing through said filament, and wherein said first bimetal element and said second bimetal element return to initial states, so that said first contact points are firstly reopened, then said second contact points are reclosed.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-132548 |
May 1999 |
JP |
|
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
3858086 |
Anderson et al. |
Dec 1974 |
|
3868540 |
Passmore et al. |
Feb 1975 |
|
4001634 |
Corbley et al. |
Jan 1977 |
|
Foreign Referenced Citations (2)
Number |
Date |
Country |
424257 |
Feb 1992 |
JP |
11086803 |
Mar 1999 |
JP |