The invention relates to a latch for a door or a flap of a motor vehicle with an operating device.
Such a latch has a locking mechanism in principle comprising a catch and a pawl for ratcheting of the catch in a ratchet position and optionally a blocking lever for blocking of the pawl in its ratchet position. Such a latch is known from DE 102009026921 A1.
The purpose of the operating device is to open the door or flap and it therefore enables unratcheting of the locking mechanism. By means of operation of the operating device, the pawl is moved out of its ratchet position and, if necessary, the blocking lever is moved out of its blocking position and the locking mechanism is finally opened. The door or flap can subsequently be opened.
The operating device usually has a triggering lever which is operated in order to open or unratchet the locking mechanism. Such a triggering lever is typically connected to a door or flap handle. This can be an external or internal handle of a relevant door or flap. If such a handle is operated, the triggering lever is operated or pivoted to unratchet the locking mechanism and thus to open the latch.
With electrically operated latches, no mechanical connection exists between the door handle, for example an external door handle, and the locking mechanism. The locking mechanism is opened by means of an electrical drive. A pertaining door handle can have an electrical switch, for example, which provides the signal for the drive of the electromotor. Wormgear wheel gearboxes consisting of a motor, a wormgear and a gearwheel are preferably used as this can achieve a great transmission ratio so that, on the one hand, very accurate control of the opening mechanism can occur and, at the same time, high triggering forces are available.
In extreme cases or under unfavorable weather conditions it can occur that much greater forces act on the locking mechanism so that a customary triggering mechanism cannot provide sufficiently great force to open the locking mechanism. Such a case can occur, for example, if the motor vehicle door has been deformed by an accident or, for example, if increased forces are required to open the locking mechanism due to extreme weather impacts, such as cold weather.
It is an object of the invention to reliably be able to open a locking mechanism of an electrically operated latch of a motor vehicle with sufficient force without needing to provide an electromotor with excessive dimensions for standard operation and/or an excessively dimensioned gearbox transmission ratio.
The object is solved by a latch with the characteristics of the first claim. Advantageous embodiments arise from the sub claims.
In order to solve the object, a latch for a motor vehicle encompasses a locking mechanism and an operating device to open a locking mechanism. The operating device encompasses a rotatable actuator which can be rotated by a motorized drive, in particular by an electrical drive. Rotation of the actuator causes unratcheting, i.e. opening, of the locking mechanism. The locking mechanism can be opened independently of the rotational direction of the actuator. It does not therefore depend on a certain rotational direction to open the locking mechanism. Every possible rotational direction therefore causes opening of the locking mechanism. The force with which the locking mechanism is opened depends on the rotational direction of the actuator. It can be opened with forces of different magnitudes dependent on the rotational direction. This enables opening with a lesser force in standard operation compared to the case which requires greater force for opening. In standard operation in which a customary force is sufficient to open the locking mechanism, opening can take place quickly and with little energy expenditure. However, the possibility exists of opening with greater force, but in a delayed manner if necessary.
In one configuration, the locking mechanism is opened by means of a pulling means in one rotational direction in particular by means of a rope winch. The rope winch is in particular arranged close to the axis of the rotatable actuator in order to be able to provide a lever ratio with great transmission and thus great force. The actuator is then driven by a drive in particular on its external circumference and in particular by an electromotor in addition to a gearbox. The external circumference can be configured as a gearwheel which is driven by a gearwheel of the gearbox or by means of a wormgear of the drive. A reliably functioning drive can thus be ensured. Instead of a rope winch, however, solely a rope or a rod can also be connected to the actuator. A pulling movement for opening of the locking mechanism is transmitted by means of this rope or this rod. The rope or the rod are also advantageously arranged close to the axis in order to enable a lever ratio which enables opening of the locking mechanism with great force.
The pulling means is in particular attached to the free end of the transmission means in order to enable a better lever ratio by means of which the locking mechanism can be opened with great force.
In one configuration, the transmission lever encompasses a tappet arranged between the free end of the transmission lever on which the pulling means is attached and the rotational axis of the transmission lever. By means of this tappet, a pivoting movement of the transmission lever can be transmitted to a pawl and the pawl can thus be moved out of its ratchet position. The arrangement of the tappet also enables the pawl being able to be moved out of its ratchet position with great force due to relevant lever ratios. The tappet is arranged in particular in the first half of the transmission lever seen from the axis by means of which the transmission lever is rotatably accommodated. In a further improved manner, a lever ratio is hereby provided which enables opening with great force.
In one configuration, the rotation of the actuator pivots a triggering lever in a rotational direction which is capable of opening with little force by pivoting of the locking mechanism. This configuration contributes to opening being able to take place with forces of very different magnitudes. The actuator can encompass a bolt which is preferably arranged peripherally in order to be able to open especially quickly.
The stated configurations enable opening with different forces and different speeds without providing an excessively large construction space or needing to operate with an excessively large technical effort. It is possible in particular that the lesser force is different many times over to the higher force without needing to operate an excessively large technical effort. The lesser force can be provided very quickly.
It is possible that the greater force is at least four times, preferably at least six times, larger than the lesser force. Thus, in one embodiment the lesser force is up to 16 Newtons. The greater force is at least 80 Newtons, advantageously at least 100 Newtons. A very great force is thus present in order to also be able open a latch in exceptional situations. Opening can occur very quickly for standard operation which only requires a lesser force.
In principle, the locking mechanism of the latch according to the invention encompasses a catch and a pawl for ratcheting of the catch and optionally also a blocking lever which is capable of blocking the pawl in its ratchet position.
The latch is an electrically operable latch in particular.
The invention is explained in further detail hereafter on the basis of figures. The following are shown:
The actuator 1 has a rope winch 9, which is arranged on the axis 2. If the actuator 1 is rotated in an anti-clockwise direction, the rope 10 is wound onto the rope winch 9. One end of the rope 10 is connected to the end of a transmission lever 11. The transmission lever 11 is rotatably accommodated by the axis 4. The pawl 3 and the transmission lever 11 are therefore pivotably accommodated by a common axis 4. If the rope 10 is wound on, the transmission lever 11 is pivoted around the axis 4 in an anti-clockwise direction. This pivoting movement of the transmission lever 11 is transmitted to the pawl 3 by means of a tappet 12 of the transmission lever 11. The tappet 12 is arranged within the first half of the transmission lever 11 viewed from the axis 4 in the direction of the attachment for the pulling means 10. The pawl 3 is moved out of its ratchet position by the tappet 12, namely with significantly greater force compared to the force which acts on the pawl 3 when the actuator 1 is rotated in a clockwise direction.
Pivoting movements of the lever can be suitably limited by stops. A stop 13 is shown as an example in
The respective position of the operating device can be monitored or detected by one or several sensors. A microswitch 14 with which the position of the actuator 1 can be detected is shown as an example in
The actuator 1 can be rotated around its axis 2 by an electrical drive 15, namely in both directions. The electrical drive 15 generally encompasses an electromotor which is capable of driving the actuator 1 by means of a gearbox. The actuator 1 can be a gearwheel which is driven by means of a further gearwheel or a wormgear of the electrical drive 15.
The embodiment according to
One or several levers can be pre-tensioned by non-illustrated springs, thus, for example, the pawl 3 by a spring in the direction of its ratchet position and/or the transmission lever 11 by a spring in the direction of its starting position, from where opening of the locking mechanism can be pivoted for opening of the locking mechanism.
The embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
10 2015 113 359.8 | Aug 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2016/100337 | 7/26/2016 | WO | 00 |