The present invention relates to the field of electrical power equipment. Specifically, the present invention relates to electric machines and a method of modulating magnetic flux in the electric machine that in effect superimposes a substantially fast continuous reversal of the magnetic poles in addition to their rotation around the air gap of the machine.
Electric machines are used in a wide range of applications, and it is desirable to improve their power density, i.e., reduce size or weight for a given power rating. The torque of a machine is proportional to D2LBA, with D and L being the diameter and length of the rotor, B being the magnetic loading and A being the electric loading. The magnetic loading, B, is a function of the magnetic flux density that the stator and rotor magnetic paths can handle without saturation or excessive losses. The electric or current loading, A, is a function of the ampere-turns that can be accommodated and is dictated by the ability to cool the windings. Many applications such as direct-drive wind turbine generators and ship propulsion motors operate at low rpms and involve very high torques, which leads to a large size and weight for the electric machines. Therefore, what is needed are techniques that can improve the power density of electric machines.
Electric machines based on prior art often use a rotating magnetic field. The rotating magnetic field is, for example, created by feeding a three-phase stator winding with three-phase alternating currents. The speed of the rotating magnetic field is set by the fundamental electrical frequency and the number of poles, with speed of the rotating magnetic field in rpm=(120.f)/p. The rotating field created by the stator currents interacts with the rotor to create a torque. This can happen in various forms for different machines. For example, in an induction machine the rotating field set up by the stator currents induces currents in the rotor windings or bars, which in turn create a rotor field that reacts with the stator field to produce a torque.
Embodiments of the invention provide an electric machine with improved power density. In particular, the invention provides a magnetic field in the electric machine air gap, wherein the poles of the magnetic field, in addition to having a rotating action around the air gap, are also flipped/reversed continuously at a rate substantially faster than the speed of rotation. The resulting higher frequency of the magnetic field allows the stator core to be smaller in size thus improving the power density of the machine since a higher frequency operation can potentially reduce the magnetic flux to be accommodated in the machine stator core.
According to another aspect of the invention, the stator current waveforms are modulated by a high frequency, and are substantially of the form ηsin(ωft+Φ)·sin(ωhft), where ωf is the fundamental frequency, Φ is the phase angle of the fundamental for the respective phases, and ωhf is the modulating high frequency and Î is the current amplitude. This modulation of the stator waveforms results in the afore-mentioned continuous high speed flipping/reversals of the magnetic field in addition to its rotation.
According to one embodiment, the rotor of the machine consists of a squirrel-cage structure with a substantially small air gap such that leakage inductance of the machine is substantially reduced. The low leakage inductance improves coupling of the rotor and the stator electromagnetic circuits such that the induced rotor currents are also flipped at a high frequency in near synchronism with the stator current high frequency modulation.
According to yet another aspect of the invention, the rotor of the machine consists of windings fed from an external source or power converter and wherein the external source or power converter controls the rotor current waveforms such that they are high frequency modulated and create a rotor magnetic field that flips in substantially synchronism with the stator magnetic field and also rotates.
According to yet another aspect of the invention, the rotor of the machine consists of a soft magnetic core with saliency in the reluctance such that the rotating and flipping stator magnetic field interacts with the rotor and produces a reluctance torque.
Various other features and advantages will be made apparent from the following detailed description and the drawings.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
Various embodiments and aspects of the invention will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.
Reference in the specification to “one embodiment” or “an embodiment” or “another embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the invention.
The foregoing description of exemplary embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. It will be recognized by those skilled in the art that many modifications and variations are possible without departing from the essential scope of the invention. It is, therefore, to be understood that the scope of the invention is not limited to the particular embodiments disclosed, and that the invention will include all embodiments falling within the scope of the claims appended hereto.
This application claims the benefit of U.S. Provisional Patent Application No. 63/388,276, titled ‘High frequency modulation of magnetic flux in an electric machine’ filed 12 Jul. 2022, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63388276 | Jul 2022 | US |