This application claims benefit of priority to Japanese Patent Application No. 2012-199680 , filed on Sep. 11, 2012 of which the full contents are herein incorporated by reference.
The present invention relates to an electric magnet device.
A conventional electric magnet device, for example, Japanese Unexamined Patent Publication No. 2001-135521 discloses an electric magnet device in which a distance between centers of a pair of leg parts formed in an armature is made less than a distance between centers of bobbin holes. The electric magnet device has a structure in which the leg parts abut on an inside surface of the bobbin holes, such that an external force is applied from a predetermined direction to move the armature in the predetermined direction. The armature turns about an end portion of the inside surface with a small turning angle. Therefore, the armature hardly drops off from the yoke to improve an impact resistance.
However, in the electric magnet device, there has been a problem that when the distance between the centers of the leg parts is excessively less than the distance between the centers of the bobbin holes due to a variation of working accuracy of a component, the leg part has a difficulty in moving in the bobbin hole.
The invention provides smooth movement of the armature inside the bobbin and, maintains an attraction state between the yoke and the armature within the electric magnet device.
In accordance with one aspect of an electric magnet device, the electric magnet device includes: a coil adapted to insert through at least one armature and a yoke so as to attract surfaces of the yoke and the armature which are opposed to each other, to receive a voltage, to excite for separating the surfaces of the yoke and the armature; the armature disposed on one end side of the coil and adapted to oscillate; and the yoke disposed on the other end side of the coil and to oscillate, wherein an oscillation angle of the yoke is greater than an oscillation angle of the armature.
According to an embodiment of the present invention, a ratio of the oscillation angle of the yoke to the oscillation angle of the armature may be greater than 1:1 and less than or equal to 3:1.
According to another embodiment of the present invention, attraction surfaces of the armature and the yoke are having a square shape.
According to a different embodiment of the present invention, attraction surfaces of the armature and the yoke may are having a circular shape.
According to still another embodiment of the electric magnet, the yoke includes an assembly notch in each of both lateral edge portions of the yoke.
The invention further provides a switch including the electric magnet device described above.
A reset-function-equipped switch 1 incorporating an electric magnet device according to a first embodiment of the present invention is described with reference to the accompanying drawings of
As illustrated in
The housing 10 has a box shape with an upper portion being opened, and the housing 10 is configured such that the power switch mechanism 20 is disposed on one side of its inner space while the drive mechanism 40 is disposed on the other side of the inner space.
The operation piece 13 has a substantially rectangular box shape with a lower surface being opened, and the operation piece 13 includes an operation surface 14, a support shaft 15, a retention part 16 (see
The power switch mechanism 20 includes a first power switch mechanism 20a and a second power switch mechanism 20b , which are disposed in parallel in the housing 10. The first and the second power switch mechanism 20a , 20b includes the coupling body 21, a movable contact piece 23, a first fixed contact piece 31, and a second fixed contact piece 34.
The coupling body 21 is composed of a coil spring bent into a chevron shape. As illustrated in
As illustrated in
A first fixed contact piece 31 has a vertically reverse L-shape, and a first fixed contact 32 is formed in the upper surface of the first fixed contact piece 31 by cutting and raising the first fixed contact piece 31. Similarly, a second fixed contact piece 34 has a vertically reverse L-shape, and a second fixed contact 35 is attached to the upper surface of the second fixed contact piece 34. Because the second power switch mechanism 20b is composed of the same components as the first power switch mechanism 20a , the same component is designated by the same numeral, and the description thereof is omitted.
As illustrated in
The electric magnet device 41 includes a bobbin 43 that includes a vertically piercing through-hole 42, a coil 48 that is wound around the bobbin 43, a yoke 50 that is inserted through the through-hole 42 of the bobbin 43 from below, and the armature 71 that is inserted through the through-hole 42 of the bobbin 43 from above.
The bobbin 43 includes two coil-winding parts 44 provided in parallel, an upper end edge part 45, and a lower end edge part 46. The coil winding part 44 is cylindrical having a rectangular shape in section, and the coil 48 is wound around an outer periphery of the coil winding part 44. The upper end edge part 45 is formed at the upper end of the coil winding part 44, and the upper end edge part 45 integrally connects the two coil winding parts 44. The lower end edge part 46 is composed of a rectangular frame body formed at the lower end of each coil winding part 44, a reset signal input terminal 55 to which a bound leads of the coil 48 is connected is press-fitted in and fixed to the lower end edge part 46.
The yoke 50 is made of a plate-like magnetic material that enhances magnetic efficiency of a permanent magnet 56 (to be described). The yoke 50 also includes a pair of upwardly extending arm parts 51, a pair of notches 52 that are formed on the lower side of the lateral surface and curved inward into a U-shape, and a linear attaching hole 53 that is formed in the center so as to extend vertically. The rectangular-solid-shape permanent magnet 56 is fitted in and fixed to the he attaching hole 53.
The case 60 includes a storage part 61 in which the electric magnet device 41 is stored, a pair of guide plates 62 formed above the storage part 61, and a socket 63 formed below the storage part 61. An upper-side latching protrusion 65 and a lower-side latching protrusion 66, which protrude outward, are formed in both side surfaces of the case 60. An insertion hole 67 (see
As illustrated in
The cover 77 has a lateral shape that can laterally be fitted in the case 60, and includes a pair of upper-side elastic arm parts 78 extending in parallel from both side edge portions on the upper side and a pair of lower-side elastic arm parts 79 extending in parallel from both side edge portions on the lower side. A horizontally extending upper-side latching hole 81 is made in the upper-side elastic arm part 78. A horizontally extending lower-side latching hole 82 is made in the lower-side elastic arm part 79.
A method for assembling the drive mechanism 40 will be described as a preceding process of assembling the switch 1. The lead of the coil 48 wound around the outer peripheral surface of the coil winding part 44 of the bobbin 43 is bound and soldered to the reset signal input terminal 55 fixed to the lower end edge part 46. The permanent magnet 56 is fitted in the attaching hole 53 of the yoke 50, and the arm part 51 is inserted through the through-hole 42 of the bobbin 43 from below, thereby forming the electric magnet device 41 except the armature 71. Because the notch 52 is provided in the yoke 50, the yoke 50 can easily be gripped with a tool through the notch, thereby improving workability.
Then the electric magnet device 41 is stored in the storage part 61 of the case 60. At this point, the upper end edge part 45 of the bobbin 43 abuts on the linear protrusion 68, and abuts on the ceiling surface of the storage part 61. Additionally, the lower end edge part 46 abuts on the upper side surface of the plate-like protrusion 69, whereby the electric magnet device 41 is positioned in the storage part 61 (case 60). At this point, the yoke 50 is retained and fitted in the storage part 61 with a play, so that the yoke 50 can oscillate with the arm part 51 being inserted through the through-hole 42. Accordingly, surface contact between the arm part 51 and the leg part 73 of the armature 71 is facilitated. As illustrated in
Then the cover 77 is mounted to the case 60 so as to cover the opening lower side of the case 60 and the socket 63. At this point, the upper-side latching hole 81 of the cover 77 is latched in the upper-side latching protrusion 65 of the case 60, and the lower-side latching hole 82 is latched in the lower-side latching protrusion 66, thereby retaining the electric magnet device 41. Finally the armature 71 is inserted through the through-hole 42 of the bobbin 43 through the insertion hole 67 of the case 60 while the return spring 75 disposed above the storage part 61 is interposed between the armature 71 and the through-hole 42, thereby completing the drive mechanism 40.
Then, as illustrated in
An operation of the switch 1 will be described below.
As illustrated in
As illustrated in
When the switch 1 is turned on, the coupling body 21 of the power switch mechanism 20 is bent into the chevron shape toward the opposite side to the drive mechanism 40. Therefore, the protrusion 25 is pressed onto the right side in
As illustrated in
In the embodiment of the present invention, a ratio of an oscillation angle ‘x’ of the yoke 50 to an oscillation angle ‘y’ of the armature 71 is preferably greater than 1:1 and less than or equal to 3:1. See,
When a voltage that generates the reverse magnetic force is applied to the coil 48 through the reset signal input terminal 55 in order to turn off the switch 1 in the on state, a magnetic flux of the permanent magnet 56 is canceled to relatively lower the magnetic force between the armature 71 and the yoke 50. Therefore, the armature 71 is pushed upward by the elastic force of the return spring 75, and the upper end surface of the armature 71 pushes up the abutment plate 17. As a result, the operation piece 13 turns about the support shaft 15, and the power switch mechanism 20 returns to the off state illustrated in
The present invention is not limited to the above embodiment, but various modifications can be made. In the above embodiment, as to the yoke 50 and the armature 71, the arm part 51 and the leg part 73 are inserted through the through-hole 42 of the bobbin 43, but not limited thereto. Alternatively, for example, in an electric magnet device according to a second embodiment illustrated in
As another example, in an electric magnet device according to a third embodiment illustrated in
The electric magnet device 41 of the first embodiment includes the pair of coils 48, the yoke 50 including the pair of arm parts 51, and the armature 71 including the pair of leg parts 73, but not limited thereto. Alternatively, for example, a configuration in which the electric magnet device includes the one coil, the yoke includes the one arm part, and the armature includes the one leg part may be employed. The electric magnet device of the present invention can of course be applied not only to the switch but also to other electric instruments.
There has thus been shown and described an electromagnetic device and switch using the same which fulfills all the advantages sought therefore. Many changes, modifications, variations and other uses and applications of the subject invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose the preferred embodiments thereof. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is to be limited only by the claims which follow.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2012-199680 | Sep 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2328831 | Mendelsohn et al. | Sep 1943 | A |
2445435 | Jennings et al. | Jul 1948 | A |
2490225 | McGall | Dec 1949 | A |
2536468 | Russell | Jan 1951 | A |
2567290 | Livingston | Sep 1951 | A |
3141939 | Mink | Jul 1964 | A |
3238398 | Trbovich et al. | Mar 1966 | A |
3242356 | Davis, Jr. | Mar 1966 | A |
3242357 | Guichard | Mar 1966 | A |
3381150 | Trbovich et al. | Apr 1968 | A |
3553729 | Mori et al. | Jan 1971 | A |
4322700 | Everhart et al. | Mar 1982 | A |
4492942 | Mueller | Jan 1985 | A |
4518945 | Doyle et al. | May 1985 | A |
4656400 | Pailthorp et al. | Apr 1987 | A |
4706056 | McCullough | Nov 1987 | A |
5127625 | Kleinhappl | Jul 1992 | A |
5303012 | Horlacher et al. | Apr 1994 | A |
5458150 | Tamaoki et al. | Oct 1995 | A |
5523684 | Zimmermann | Jun 1996 | A |
5584465 | Ochsenreiter | Dec 1996 | A |
5942892 | Li | Aug 1999 | A |
6293516 | Parsons et al. | Sep 2001 | B1 |
6305662 | Parsons et al. | Oct 2001 | B1 |
6450478 | Parsons et al. | Sep 2002 | B2 |
6739573 | Balsdon | May 2004 | B1 |
6948697 | Herbert et al. | Sep 2005 | B2 |
6955334 | Parsons et al. | Oct 2005 | B2 |
7965161 | Roche | Jun 2011 | B2 |
8026781 | Freakes | Sep 2011 | B2 |
8382063 | Watanabe | Feb 2013 | B2 |
8505573 | Herbert et al. | Aug 2013 | B2 |
8552823 | Isonaga | Oct 2013 | B2 |
20030052760 | Smith | Mar 2003 | A1 |
20050127759 | Kraus et al. | Jun 2005 | A1 |
20060043798 | Konno | Mar 2006 | A1 |
20100123093 | Beyer et al. | May 2010 | A1 |
20130257571 | Kahl et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1511051 | Mar 2005 | EP |
2001135521 | May 2001 | JP |
Entry |
---|
European Search Report for Corresponding application EP13178744.2 ; Report Dated Mar. 7, 2014. |
Number | Date | Country | |
---|---|---|---|
20140070909 A1 | Mar 2014 | US |