1. Field of the Invention
This invention is in the field of nerve stimulation for the treatment of medical conditions.
2. Background Art
Obesity is considered an epidemic in the U.S. with a prevalence of 19.8%. The annual healthcare costs associated with obesity are estimated to exceed $200 BB. Obesity is defined as a body mass index (BMI) that exceeds 30 kg/m2. Normal BMI is 18.5-25 kg/m2 and overweight persons have BMIs of 25-30. Obesity is classified into three groups moderate (Class 1), severe (Class II), and very severe (Class Patients with BMIs that exceed 30 are at risk for significant comorbidities such as diabetes, heart and kidney disease, dyslipidemia, hypertension, sleep apnea, and orthopedic problems.
Obesity results from an imbalance between food intake and energy expenditure such that there is a net increase in fat reserves. Excessive food intake, reduced energy expenditure, or both may cause this imbalance. Appetite and satiety, which control food intake, are partly controlled in the brain by the hypothalamus. Energy expenditure is also partly controlled by the hypothalamus. The hypothalamus regulates the autonomic nervous system of which there are two branches, the sympathetic and the parasympathetic. The sympathetic nervous system generally prepares the body for action by increasing heart rate, blood pressure, and metabolism. The parasympathetic system prepares the body for rest by lowering heart rate, lowering blood pressure, and stimulating digestion. Destruction of the lateral hypothalamus results in hunger suppression, reduced food intake, weight loss, and increased sympathetic activity. In contrast, destruction of the ventromedial nucleus of the hypothalamus results in suppression of satiety, excessive food intake, weight gain, and decreased sympathetic activity. The splanchnic nerves carry sympathetic neurons that supply, or innervate, the organs of digestion and adrenal glands, and the vagus nerve carries parasympathetic neurons that innervate the digestive system and are involved in the feeding and weight gain response to hypothalamic destruction.
Experimental and observational evidence suggests that there is a reciprocal relationship between food intake and sympathetic nervous system activity. Increased sympathetic activity reduces food intake and reduced sympathetic activity increases food intake. Certain peptides (e.g. neuropeptide Y, galanin) are known to increase food intake while decreasing sympathetic activity. Others such as cholecystokinin, leptin, enterostatin, reduce food intake and increase sympathetic activity. In addition, drugs such as nicotine, ephedrine, caffeine, subitramine, dexfenfluramine, increase sympathetic activity and reduce food intake.
Ghrelin is another peptide that is secreted by the stomach that is associated with hunger. Peak plasma levels occur just prior to meal time, and ghrelin levels are increased after weight loss. Sympathetic activity may suppress ghrelin secretion.
Appetite is stimulated by various psychosocial factors, but is also stimulated by low blood glucose levels. Cells in the hypothalamus that are sensitive to glucose levels are thought to play a role in hunger stimulation. Sympathetic activity increases plasma glucose levels. Satiety is promoted by distension of the stomach and delayed gastric emptying. Sympathetic activity reduces duodenal motility and increases pyloric sphincter, which may result in distention and delayed gastric emptying.
The sympathetic nervous system plays a role in energy expenditure and obesity. Genetically inherited obesity in rodents is characterized by decreased sympathetic activity to adipose tissue and other peripheral organs. Catecholamines and cortisol, which are released by the sympathetic nervous system, cause a dose-dependent increase in resting energy expenditure. In humans, there is a reported negative correlation between body fat and plasma catecholamine levels. Overfeeding or underfeeding lean human subjects has a significant effect on energy expenditure and sympathetic nervous system activation. For example, weight loss in obese subjects is associated with a compensatory decrease in energy expenditure, which promotes the regain of previously lost weight. Drugs that activate the sympathetic nervous system, such as ephedrine, caffeine and nicotine, are known to increase energy expenditure. Smokers are known to have lower body fat stores and increased energy expenditure.
The sympathetic nervous system also plays an important role in regulating energy substrates for increased expenditure, such as fat and carbohydrate. Glycogen and fat metabolism are increased by sympathetic activation and are needed to support increased energy expenditure.
Animal research involving acute electrical activation of the splanchnic nerves under general anesthesia causes a variety of physiologic changes. Electrical activation of a single splanchnic nerve in dogs and cows causes a frequency dependent increase in catecholamine, dopamine, and cortisol secretion. Plasma levels can be achieved that cause increased energy expenditure. In adrenalectomized anesthetized pigs, cows, and dogs, acute single splanchnic nerve activation causes increased blood glucose and reduction in glycogen liver stores. In dogs, single splanchnic nerve electrical activation causes increased pyloric sphincter tone and decrease duodenal motility. Sympathetic and splanchnic nerve activation can cause suppression of insulin and leptin hormone secretion.
First line therapy for obesity is behavior modification involving reduced food intake and increased exercise. However, these measures often fail and behavioral treatment is supplemented with pharmacologic treatment using the pharmacologic agents noted above to reduce appetite and increase energy expenditure. Other pharmacologic agents that may cause these affects include dopamine and dopamine analogs, acetylcholine and cholinesterase inhibitors. Pharmacologic therapy is typically delivered orally and results in systemic side effects such as tachycardia, sweating, and hypertension. In addition, tolerance can develop such that the response to the drug reduces even at higher doses.
More radical forms of therapy involve surgery. In general, these procedures reduce the size of the stomach and/or reroute the intestinal system to avoid the stomach. Representative procedures are gastric bypass surgery and gastric banding. These procedures can be very effective in treating obesity, but they are highly invasive, require significant lifestyle changes, and can have severe complications.
Experimental forms of treatment for obesity involve electrical stimulation of the stomach (gastric pacing) and the vagus nerve (parasympathetic system). These therapies use a pulse generator to electrically stimulate the stomach or vagus nerve via implanted electrodes. The intent of these therapies is to reduce food intake through the promotion of satiety and or reduction of appetite, and neither of these therapies is believed to affect energy expenditure. U.S. Pat. No. 5,423,872 to Cigaina describes a method for treating eating disorders by electrically pacing the stomach. The believed mechanism of action is the promotion of satiety by reducing gastric activity and consequently delaying stomach content emptying. Reduction of appetite may also occur, but this is unclear. U.S. Pat. No. 5,263,480 to Wernicke discloses a method for treating obesity by electrically activating the vagus nerve. This therapy may promote satiety as afferent fibers that are stimulated by stomach distention are carried in the vagus nerve. Neither of these therapies increases energy expenditure.
The present invention includes a method for treating obesity or other disorders by electrically activating the sympathetic nervous system. Obesity can be treated by activating the efferent sympathetic nervous system, thereby increasing energy expenditure and reducing food intake. Stimulation is accomplished using a pulse generator and electrodes implanted near, or attached to, various areas of the sympathetic nervous system, such as the sympathetic chain ganglia, the splanchnic nerves (greater, lesser, least), or the peripheral ganglia (eg. celiac, mesenteric). Ideally, the obesity therapy will employ electrical activation of the sympathetic nervous system that innervates the digestive system, adrenals, and abdominal adipose tissue, such as the splanchnic nerves or celiac ganglia.
This method of obesity treatment may reduce food intake by a variety of mechanisms, including general increased sympathetic system activation and increasing plasma glucose levels upon activation. Satiety may be produced through direct affects on the pylorus and duodenum that cause stomach distension and delayed stomach emptying. In addition, food intake may be reduced by reducing ghrelin secretion.
This method of obesity treatment may also increase energy expenditure by causing catecholamine, cortisol, and dopamine release from the adrenal glands. The therapy could be titrated to the release of these hormones. Fat and carbohydrate metabolism, which are also increased by sympathetic nerve activation, will accompany the increased energy expenditure. Other hormonal effects induced by this therapy may include reduced insulin secretion. Alternatively, this method may be used to normalize catecholamine levels, which are reduced with weight gain.
Electrical sympathetic activation for treating obesity is ideally accomplished without causing a rise in mean arterial blood pressure (MAP). This may be achieved by using an appropriate stimulation pattern with a relatively short signal-on time followed by an equal or longer signal-off time. During activation therapy, a sinusoidal-like fluctuation in the MAP may occur with an average MAP that is within safe limits. Alternatively, an alpha sympathetic receptor blocker, such as prazosin, could be used to blunt the increase in MAP.
Electrical sympathetic activation may be titrated to the plasma level of catecholamines achieved during therapy. This would allow the therapy to be monitored and safe levels of increased energy expenditure to be achieved. The therapy could also be titrated to plasma ghrelin levels.
Electrical modulation (inhibition or activation) of the sympathetic nerves can also be used to treat other eating disorders such as anorexia or bulimia. For example, inhibition of the sympathetic nerves may be useful in treating anorexia. Electrical modulation of the sympathetic nerves may also be used to treat gastrointestinal diseases such as peptic ulcers, esophageal reflux, gastroparesis, and irritable bowel. For example, stimulation of the splanchnic nerves that innervate the large intestine may reduce the symptoms of irritable bowel syndrome, characterized by diarrhea. Pain may also be treated by electric nerve modulation of the sympathetic nervous system, as certain pain neurons are carried in the sympathetic nerves. This therapy may also be used to treat type II diabetes. These conditions may require varying degrees of inhibition or stimulation.
The novel features of this invention, as well as the invention itself, will be best understood from the attached drawings, taken along with the following description, in which similar reference characters refer to similar parts, and in which:
The human nervous system is a complex network of nerve cells, or neurons, found centrally in the brain and spinal cord and peripherally in the various nerves of the body. Neurons have a cell body, dendrites and an axon. A nerve is a group of neurons that serve a particular part of the body. Nerves may contain several hundred neurons to several hundred thousand neurons. Nerves often contain both afferent and efferent neurons. Afferent neurons carry signals back to the central nervous system and efferent neurons carry signals to the periphery. A group of neuronal cell bodies in one location is known as a ganglion. Electrical signals are conducted via neurons and nerves. Neurons release neurotransmitters at synapses (connections) with other nerves to allow continuation and modulation of the electrical signal. In the periphery, synaptic transmission often occurs at ganglia.
The electrical signal of a neuron is known as an action potential. Action potentials are initiated when a voltage potential across the cell membrane exceeds a certain threshold. This action potential is then propagated down the length of the neuron. The action potential of a nerve is complex and represents the sum of action potentials of the individual neurons in it.
Neurons can be myelinated and unmyelinated, of large axonal diameter and small axonal diameter. In general, the speed of action potential conduction increases with myelination and with neuron axonal diameter. Accordingly, neurons are classified into type A, B and C neurons based on myelination, axon diameter, and axon conduction velocity. In terms of axon diameter and conduction velocity, A is greater than B which is greater than C.
The autonomic nervous system is a subsystem of the human nervous system that controls involuntary actions of the smooth muscles (blood vessels and digestive system), the heart, and glands, as shown in
The hypothalamus controls the sympathetic nervous system via descending neurons in the ventral horn of the spinal cord, as shown in
Several large sympathetic nerves and ganglia are formed by the neurons of the sympathetic nervous system as shown in
Postganglionic neurons, arising from the celiac ganglia that synapse with the GSN, innervate primarily the upper digestive system, including the stomach, pylorus, duodenum, pancreas, and liver. In addition, blood vessels and adipose tissue of the abdomen are innervated by neurons arising from the celiac ganglia/greater splanchnic nerve. Postganglionic neurons of the mesenteric ganglia, supplied by preganglionic neurons of the lesser and least splanchnic nerve, innervate primarily the lower intestine, colon, rectum, kidneys, bladder, and sexual organs, and the blood vessels that supply these organs and tissues.
In the treatment of obesity, the preferred embodiment involves electrical activation of the greater splanchnic nerve of the sympathetic nervous system. Preferably unilateral activation would be utilized, although bilateral activation could also be utilized. The celiac ganglia could also be activated, as well as the sympathetic chain or ventral spinal roots.
Electrical nerve modulation (nerve activation or inhibition) is accomplished by applying an energy signal (pulse) at a certain frequency to the neurons of a nerve (nerve stimulation). The energy pulse causes depolarization of neurons within the nerve above the activation threshold resulting in an action potential. The energy applied is a function of the current amplitude and pulse width duration. Activation or inhibition can be a function of the frequency, with low frequencies on the order of 1 to 50 Hz resulting in activation and high frequencies greater than 100 Hz resulting in inhibition. Inhibition can also be accomplished by continuous energy delivery resulting in sustained depolarization. Different neuronal types may respond to different frequencies and energies with activation or inhibition.
Each neuronal type (i.e., type A, B, or C neurons) has a characteristic pulse amplitude-duration profile (energy pulse signal) that leads to activation. Myelinated neurons (types A and B) can be stimulated with relatively low current amplitudes on the order of 0.1 to 5.0 milliamperes and short pulse widths on the order of 50 to 200 microseconds. Unmyelinated type C fibers typically require longer pulse widths on the order of 300 to 1,000 microseconds and higher current amplitudes. This difference in energy for activation can be utilized to selectively stimulate certain neurons in a nerve containing mixed neuronal types. This can be important in stimulating nerves such as the splanchnic, because the splanchnic nerves contains both afferent pain neurons, which are typically type C neurons, and efferent pre-ganglionic neurons, which are myelinated type B. If a therapy such as obesity treatment involves splanchnic nerve activation, it would be desirable to activate the efferent type B neurons and not the afferent type C pain neurons. This may be accomplished by varying the energy pulse signal.
Two important parameters related to stimulation of peripheral nerves of mixed neuronal type are the rheobase and chronaxie. These two parameters are a function of the stimulus duration and stimulus strength (current amplitude). The rheobase is the lower limit of the stimulus strength below which an action potential cannot be generated, regardless of the stimulus duration. The chronaxie is the stimulus duration corresponding to twice the rheobase. This is a measure of excitability of the mixed peripheral nerve. It is not desirable to stimulate a peripheral nerve at stimulus intensities greater than the chronaxie. The chronaxie of the splanchnic nerve is likely between approximately 150 microseconds and 400 microseconds.
Various stimulation patterns, ranging from continuous to intermittent, can be utilized. With intermittent stimulation, energy is delivered for a period of time at a certain frequency during the signal-on time as shown in
Superimposed on the stimulation pattern are the treatment parameters, frequency and duration. The treatment frequency may be continuous or delivered at various time periods within the day or week. The treatment duration may last for as little as a few minutes to as long as several hours. For example, splanchnic nerve activation to treat obesity may be delivered at a frequency of three times daily, coinciding with meal times. Treatment duration with a specified stimulation pattern may last for one hour. Alternatively, treatment may be delivered at a higher frequency, say every three hours, for shorter durations, say 30 minutes. The treatment duration and frequency can be tailored to achieve the desired result.
Pulse generation for electrical nerve modulation is accomplished using a pulse generator. Pulse generators can use conventional microprocessors and other standard electrical components. A pulse generator for this embodiment can generate a pulse, or energy signal, at frequencies ranging from approximately 0.5 Hz to 300 Hz, a pulse width from approximately 10 to 1,000 microseconds, and a constant current of between approximately 0.1 milliamperes to 20 milliamperes. The pulse generator may be capable of producing a ramped, or sloped, rise in the current amplitude. The preferred pulse generator can communicate with an external programmer and or monitor. Passwords, handshakes and parity checks are employed for data integrity. The pulse generator can be battery operated or operated by an external radiofrequency device. Because the pulse generator, associated components, and battery may be implanted they are preferably encased in an epoxy-titanium shell.
A schematic of the implantable pulse generator (IPG) is shown in
The IPG is coupled to a lead and electrode assembly. The lead is a bundle of electrically conducting wires insulated from the surroundings by a non-electrically conducting coating. The wires of the lead connect the IPG to the stimulation electrodes, which transfers the energy pulse to the nerve. A single wire may connect the IPG to the electrode, or a wire bundle may connect the IPG to the electrode. Wire bundles may or may not be braided. Wire bundles are preferred because they increase reliability and durability. Alternatively, a helical wire assembly could be utilized to improve durability with flexion and extension of the lead.
The electrodes are preferably platinum or platinum-iridium ribbons or rings as shown in
Bipolar stimulation of a nerve can be accomplished with multiple electrode assemblies with one electrode serving as the positive node and the other serving as a negative node. In this manner nerve activation can be directed primarily in one direction (unilateral), such as efferently, or away from the central nervous system. Alternatively, a nerve cuff electrode can be employed. Helical cuff electrodes as described in U.S. Pat. No. 5,251,634 to Weinberg are preferred. Cuff assemblies can similarly have multiple electrodes and direct and cause unilateral nerve activation.
Unipolar stimulation can also be performed. As used herein, unipolar stimulation means using only a single electrode on the lead, while the metallic shell of the IPG, or another external portion of the IPG, essentially functions as a second electrode, remote from the first electrode. This type of unipolar stimulation may be more suitable for splanchnic nerve stimulation than the bipolar stimulation method, particularly if the electrode is to be placed percutaneously under fluoroscopic visualization. With fluoroscopically observed percutaneous placement, it may not always be possible to place the electrodes immediately adjacent the nerve, which can be required for bipolar stimulation. With unipolar stimulation, a larger energy field is created in order to electrically couple the electrode on the lead with the remote external portion of the IPG, and the generation of this larger energy field can result in activation of the nerve even in the absence of close proximity between the single lead electrode and the nerve. This allows successful nerve stimulation with the single electrode placed only in “general proximity” to the nerve, meaning that there can be significantly greater separation between the electrode and the nerve than the “close proximity” required for bipolar stimulation. The magnitude of the allowable separation between the electrode and the nerve will necessarily depend upon the actual magnitude of the energy field which the operator generates with the lead electrode in order to couple with the remote electrode.
In multiple electrode lead assemblies, some of the electrodes may be used for sensing nerve activity. This sensed nerve activity could serve as a signal to commence stimulation therapy. For example, afferent action potentials in the splanchnic nerve, created due to the commencement of feeding, could be sensed and used to activate the IPG to begin stimulation of the efferent neurons of the splanchnic nerve. Appropriate circuitry and logic for receiving and filtering the sensed signal would be required in the IPG.
Because branches of the splanchnic nerve directly innervate the adrenal medulla, electrical activation of the splanchnic nerve results in the release of catecholamines (epinephrine and norepinephrine) into the blood stream. In addition, dopamine and cortisol, which also raise energy expenditure, can be released. Catecholamines can increase energy expenditure by 15% to 20%. By comparison, subitramine, a pharmacologic agent used to treat obesity, increases energy expenditure by only 3% to 5%.
Human resting venous blood levels of norepinephrine and epinephrine are approximately 25 picograms (pg)/milliliter (ml) and 300 pg/ml, respectively, as shown in
In anesthetized animals, electrical stimulation of the splanchnic nerve has shown to raise blood catecholamine levels in a frequency dependent manner in the range of 1 Hz to 20 Hz, such that rates of catecholamine release/production of 0.3 to 4.0 μg/min can be achieved. These rates are sufficient to raise plasma concentrations of epinephrine to as high as 400 to 600 pg/ml, which in turn can result in increased energy expenditure ranging from 10% to 20% as shown in
Energy expenditure in humans ranges from approximately 1.5 kcal/min to 2.5 kcal/min. A 15% increase in this energy expenditure in a person with a 2.0 kcal/min energy expenditure would increase expenditure by 0.3 kcal/min. Depending on treatment parameters, this could result in an additional 100 to 250 kcal of daily expenditure and 36,000 to 91,000 kcal of yearly expenditure. One pound of fat is approximately 3500 kcal, yielding an annual weight loss of 10 to 26 pounds.
Increased energy expenditure would need to be fueled by fat and carbohydrate metabolism. Postganglionic branches of the splanchnic nerve innervate the liver and fat deposits of the abdomen. Activation of the splanchnic nerve can result in fat metabolism and the liberation of fatty acids, as well as glycogen breakdown and the release of glucose from the liver. Fat metabolism coupled with increased energy expenditure may result in a net reduction in fat reserves.
It may also be desirable to titrate obesity therapy to plasma ghrelin levels. In humans, venous blood ghrelin levels range from approximately 250 pg/ml to greater than 700 pg/ml as shown in
In anesthetized animals, electrical activation of the splanchnic nerve has also been shown to decrease insulin secretion. In obesity, insulin levels are often elevated, and insulin resistant diabetes (Type II) is common. Down-regulation of insulin secretion by splanchnic nerve activation may help correct insulin resistant diabetes.
In a first embodiment, a method for treating diabetes is disclosed, the method comprising monitoring a first patient parameter and a second patient parameter; and electrically activating a splnachnic nerve in the patient with a signal-on no greater than a signal-off time so as to achieve a desired change in the second monitored parameter; wherein the splanchnic nerve is selected from the group consisting of the greater splanchnic nerve, the lesser splanchnic nerve, and the least splanchnic nerve; wherein the first monitored parameter comprises an arterial blood pressure; and wherein the electrically activating comprises activating the sympathetic nervous system with stimulation parameters that keep the arterial blood pressure with safe limits; wherein the second parameter comprises an insulin level; and the electrically activating further comprises activating the splanchnic nerve to achieve a decrease in insulin level.
Electrical activation of the splanchnic nerve can cause an increase in mean arterial blood pressure (MAP) above a baseline value. A drop in MAP below the baseline can follow this increase. Because a sustained increase in MAP is undesirable, the stimulation pattern can be designed to prevent an increase in MAP. One strategy would be to have a relatively short signal-on time followed by a signal-off time of an equal or longer period. This would allow the MAP to drop back to or below the baseline. The subsequent signal-on time would then raise the MAP, but it may start from a lower baseline. In this manner a sinusoidal-like profile of the MAP could be set up during therapy delivery that would keep the average MAP within safe limits. The rise in MAP is accompanied by a decrease in heart rate which is a compensatory mechanism that may also normalize MAP with sustained stimulation for more than approximately 10 minutes.
Alternatively, an alpha-sympathetic receptor blocker, such a prazosin could be used to blunt the rise in MAP. Alpha-blockers are commonly available antihypertensive medications. The rise in MAP seen with splanchnic nerve stimulation is the result of alpha-receptor activation, which mediates arterial constriction. Because the affects of this therapy on reduced food intake and energy expenditure are related to beta-sympathetic receptor activity, addition of the alpha-blocker would not likely alter the therapeutic weight loss benefits.
Implantation of the lead/electrode assembly for activation of the greater splanchnic nerve is ideally accomplished percutaneously using an introducer as shown in
Percutaneous placement of the lead electrode assembly could be enhanced using direct or video assisted visualization. An optical port could be incorporated into the introducer. A separate channel would allow the electrode lead assembly to be inserted and positioned, once the nerve was visualized. Alternatively, a percutaneous endoscope could be inserted into the chest cavity for viewing advancement of the introducer to the nerve. The parietal lung pleuron is relatively clear, and the nerves and introducer can be seen running along the vertebral bodies. With the patient prone, the lungs are pulled forward by gravity creating a space for the endoscope and for viewing. This may avoid the need for single lung ventilation. If necessary, one lung could be collapsed to provide space for viewing. This is a common and safe procedure performed using a bifurcated endotracheal tube. The endoscope could also be placed laterally, and positive CO2 pressure could be used to push down the diaphragm, thereby creating a space for viewing and avoiding lung collapse.
Alternatively, stimulation electrodes could be placed along the sympathetic chain ganglia from approximately vertebra T4 to T11. This implantation could be accomplished in a similar percutaneous manner as above. This would create a more general activation of the sympathetic nervous system, though it would include activation of the neurons that comprise the splanchnic nerves.
Alternatively, the lead/electrode assembly could be placed intra-abdominally on the portion of the splanchnic nerve that resides retroperitoneally on the abdominal aorta just prior to synapsing in the celiac ganglia. Access to the nerve in this region could be accomplished laparoscopically, using typical laparoscopic techniques, or via open laparotomy. A cuff electrode could be used to encircle the nerve unilaterally or bilaterally. The lead could be anchored to the crus of the diaphragm. A cuff or patch electrode could also be attached to the celiac ganglia unilaterally or bilaterally. Similar activation of the splanchnic branches of the sympathetic nervous system would occur as implanting the lead electrode assembly in the thoracic region.
An alternative lead/electrode placement would be a transvascular approach. Due to the proximity of the splanchnic nerves to the azygous veins shown in
While the particular invention as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages hereinbefore stated, it is to be understood that this disclosure is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended other than as described in the appended claims.
This application is a divisional U.S. application Ser. No. 11/804,449, filed May 17, 2007, now U.S. Pat. No. 8,024,035, entitled “Electric Modulation of Sympathetic Nervous System,” which is a divisional of U.S. application Ser. No. 10/243,612, filed Sep. 13, 2002, now U.S. Pat. No. 7,239,912, entitled “Electric Modulation of Sympathetic Nervous System,” which claims the benefit of U.S. Provisional Application No. 60/366,750, filed Mar. 22, 2002, entitled “Sympathetic Nervous System Electrical Stimulation for Weight Control”; U.S. Provisional Application No. 60/370,311, filed Apr. 5, 2002, entitled “Splanchnic Nerve Stimulation and Anchoring to the Crus of the Diaphragm for Obesity Treatment”; U.S. Provisional Application No. 60/379,605, filed May 10, 2002, entitled “Percutaneous Placement of an Electrode for Splanchnic Nerve Stimulation With and Without Thorascopic Visualization for Obesity and Diabetes Therapy”; U.S. Provisional Application No. 60/384,219, filed May 30, 2002, entitled “Sympathetic Nervous System Electrical Stimulation for Weight Control”; and U.S. Provisional Application No. 60/386,699, filed Jun. 10, 2002, entitled “Treatment of Obesity and Other Medical Conditions Through Electrical Nerve Modulation of the Sympathetic Nervous System,” the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3911930 | Hagfors et al. | Oct 1975 | A |
4315509 | Smit | Feb 1982 | A |
4501264 | Rockey | Feb 1985 | A |
4549556 | Tarjan et al. | Oct 1985 | A |
4573481 | Bullara | Mar 1986 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4595010 | Radke | Jun 1986 | A |
4702254 | Zabara | Oct 1987 | A |
4827935 | Geddes et al. | May 1989 | A |
4867164 | Zabara | Sep 1989 | A |
5095905 | Klepinski | Mar 1992 | A |
5107833 | Barsness | Apr 1992 | A |
5121754 | Mullett | Jun 1992 | A |
5154172 | Terry, Jr. et al. | Oct 1992 | A |
5179950 | Stanislaw | Jan 1993 | A |
5186170 | Varrichio et al. | Feb 1993 | A |
5188104 | Wernicke et al. | Feb 1993 | A |
5205285 | Baker, Jr. | Apr 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5215089 | Baker, Jr. | Jun 1993 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5235980 | Varrichio et al. | Aug 1993 | A |
5237991 | Baker, Jr. et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5281581 | Cooper et al. | Jan 1994 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5306300 | Berry | Apr 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5423872 | Cigaina | Jun 1995 | A |
5454840 | Krakovsky et al. | Oct 1995 | A |
5458626 | Krause | Oct 1995 | A |
5515848 | Corbett, III et al. | May 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5690691 | Chen et al. | Nov 1997 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5716392 | Bourgeois et al. | Feb 1998 | A |
5725563 | Klotz | Mar 1998 | A |
5755750 | Petruska et al. | May 1998 | A |
5782798 | Rise | Jul 1998 | A |
5820584 | Crabb | Oct 1998 | A |
5836994 | Bourgeois | Nov 1998 | A |
5861014 | Familoni | Jan 1999 | A |
5866547 | Flier et al. | Feb 1999 | A |
5868141 | Ellias | Feb 1999 | A |
5919216 | Houben et al. | Jul 1999 | A |
5922015 | Schaldach | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5995872 | Bourgeois | Nov 1999 | A |
6026326 | Bardy | Feb 2000 | A |
6041258 | Cigaina | Mar 2000 | A |
6058331 | King | May 2000 | A |
6068596 | Weth et al. | May 2000 | A |
6097984 | Douglas | Aug 2000 | A |
6109269 | Rise et al. | Aug 2000 | A |
6129685 | Howard, III | Oct 2000 | A |
6146391 | Cigaina | Nov 2000 | A |
6146416 | Andersen et al. | Nov 2000 | A |
6165180 | Cigaina | Dec 2000 | A |
6169924 | Meloy et al. | Jan 2001 | B1 |
6243607 | Mintchev et al. | Jun 2001 | B1 |
6308105 | Duysens et al. | Oct 2001 | B1 |
6321124 | Cigaina | Nov 2001 | B1 |
6350455 | Donovan | Feb 2002 | B1 |
6356786 | Rezai et al. | Mar 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6381495 | Jenkins | Apr 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6497718 | Dewan | Dec 2002 | B1 |
6535764 | Imran et al. | Mar 2003 | B2 |
6542776 | Gordon et al. | Apr 2003 | B1 |
6558320 | Causey et al. | May 2003 | B1 |
6572627 | Gabbay | Jun 2003 | B2 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6645229 | Matsumura et al. | Nov 2003 | B2 |
6675809 | Stack et al. | Jan 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6758219 | Sapala et al. | Jul 2004 | B2 |
6879859 | Boveja | Apr 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6912419 | Hill et al. | Jun 2005 | B2 |
6922590 | Whitehurst | Jul 2005 | B1 |
7076292 | Forsberg | Jul 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7155278 | King et al. | Dec 2006 | B2 |
7236822 | Dobak, III | Jun 2007 | B2 |
7239912 | Dobak, III | Jul 2007 | B2 |
7433734 | King | Oct 2008 | B2 |
7483746 | Lee et al. | Jan 2009 | B2 |
7529582 | DiLorenzo | May 2009 | B1 |
7551964 | Dobak, III | Jun 2009 | B2 |
7599736 | DiLorenzo | Oct 2009 | B2 |
7771382 | Levine et al. | Aug 2010 | B2 |
20020032177 | Allan et al. | Mar 2002 | A1 |
20020065217 | Qian et al. | May 2002 | A1 |
20020072780 | Foley | Jun 2002 | A1 |
20020077675 | Greenstein | Jun 2002 | A1 |
20020099419 | Cohen et al. | Jul 2002 | A1 |
20030008838 | Havel et al. | Jan 2003 | A1 |
20030014127 | Talja et al. | Jan 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030144708 | Starkebaum | Jul 2003 | A1 |
20030181958 | Dobak, III | Sep 2003 | A1 |
20030191476 | Smit | Oct 2003 | A1 |
20030211967 | Bryant et al. | Nov 2003 | A1 |
20040015201 | Greenstein | Jan 2004 | A1 |
20040039452 | Bessler | Feb 2004 | A1 |
20040049209 | Benchetrit | Mar 2004 | A1 |
20040089313 | Utley et al. | May 2004 | A1 |
20040097989 | Molina Trigueros et al. | May 2004 | A1 |
20040107004 | Levine et al. | Jun 2004 | A1 |
20040230255 | Dobak, III | Nov 2004 | A1 |
20040249362 | Levine et al. | Dec 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050080395 | Levine et al. | Apr 2005 | A1 |
20050080491 | Levine et al. | Apr 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050143788 | Yun et al. | Jun 2005 | A1 |
20050149146 | Boveja et al. | Jul 2005 | A1 |
20050192614 | Binmoeller | Sep 2005 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20070162085 | DiLorenzo | Jul 2007 | A1 |
20080262411 | Dobak | Oct 2008 | A1 |
20090259279 | Dobak, III | Oct 2009 | A1 |
20100216709 | Scheule et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
06165827 | Jun 1994 | JP |
09511421 | Nov 1997 | JP |
2004502506 | Jan 2004 | JP |
2004522526 | Jul 2004 | JP |
WO 9526783 | Oct 1995 | WO |
WO 9853878 | Dec 1998 | WO |
WO 9857701 | Dec 1998 | WO |
WO 0061223 | Oct 2000 | WO |
WO 0152932 | Jul 2001 | WO |
WO 0158520 | Aug 2001 | WO |
WO 0183028 | Nov 2001 | WO |
WO 0204068 | Jan 2002 | WO |
WO 0226315 | Apr 2002 | WO |
WO 0226317 | Apr 2002 | WO |
WO 0234331 | May 2002 | WO |
WO 0243467 | Jun 2002 | WO |
WO 02062291 | Aug 2002 | WO |
WO 03086246 | Oct 2003 | WO |
WO 03094785 | Nov 2003 | WO |
WO 2004019765 | Mar 2004 | WO |
WO 2004049982 | Jun 2004 | WO |
WO 2004064680 | Aug 2004 | WO |
WO 2004064685 | Aug 2004 | WO |
WO 2004075974 | Sep 2004 | WO |
WO 2006007048 | Jan 2006 | WO |
WO 2006023498 | Mar 2006 | WO |
WO 2007087332 | Aug 2007 | WO |
WO 2007146287 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110319969 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
60366750 | Mar 2002 | US | |
60370311 | Apr 2002 | US | |
60379605 | May 2002 | US | |
60384219 | May 2002 | US | |
60386699 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11804449 | May 2007 | US |
Child | 13230525 | US | |
Parent | 10243612 | Sep 2002 | US |
Child | 11804449 | US |