The present invention relates to an electric motor for electric drive units of motor vehicles, in particular a direct current low-power electric motor, for example a permanent-magnet direct current low-power electric motor. The invention further relates to an electric drive unit for motor vehicles.
With an electric motor of the type initially referred to, the current supply in the rotor winding takes place by way of brushes or carbons which provide a sliding contact with the rotating commutator and thus supply the coils with current. The beginnings and ends of the rotor coils are connected to the bars of the commutator (also called the collector). The commutator's bars are separate and distributed evenly around the electric motor's axis of rotation whereby diametrically opposed bars are joined in each case to the ends of the same turn of the rotor or to an assembly of connections switched in parallel. Two likewise diametrically opposed stationary brushes or carbons are connected to the bars of the commutator in a sliding contact. Commutator and brushes act as a mechanical switch or inverter in order to reverse the current direction appropriately through the rotor windings.
Noises, which are frequently perceived as annoying, occur when the brushes or carbons slide or rub on the commutator bars.
The following two solutions are known in particular from the prior art for reducing noise development: according to a first approach, such as is disclosed for example in the German utility model DE 87 05 141 U1, the carbons or brushes are guided accurately in a straight line within a shaft, that is to say precisely in the radial direction of the commutator. In this shaft the brushes or carbons are biased against the commutator by means of restoring elements. Straight-line guidance minimises tangential evasion movements of the carbons or brushes which lead to oscillations of said brushes. According to another approach, from which the present invention proceeds, the carbons or brushes are held by leaf springs on their free end, in particular by leaf springs clamped on one side. The leaf springs are biased against the commutator in order to minimise oscillations.
In this regard, it is necessary that the brushes or carbons are seated accurately on the commutator. For this purpose it is known to groove the underside of the brushes or carbons. In operation, the brushes or carbons initially grind themselves in until eventually a concave curvature, which corresponds to the commutator's outer circumference, is formed on their underside. Annoying operating noises, which it is aimed to prevent, arise during grinding in of the brushes or carbons. It is also known from the prior art to grind the underside of the brushes or carbons in a V-shape or with the radius of the commutator. The brushes or carbons are positioned and ground in during operation until eventually a concave curvature, which corresponds to the commutator's outer circumference, is formed on their underside. Attempts are always made to achieve accurate positioning of the brushes by shaping the brush holders appropriately.
The object of the invention is to provide a direct current low-power electric motor for motor vehicles in which the brushes can be positioned even more accurately and in which noise development can be reduced still further. In addition, the intention according to the present invention there is to be provided a corresponding electric drive unit.
These and other objects are achieved according to the present invention by an electric motor with the features according to claim 1 and by an electric drive unit with the features according to claim 20. Further advantageous embodiments are the subject matter of the related subclaims.
Thus the invention proceeds from an electric motor comprising a housing and a brush assembly holder, which holds at least two brush holders with brushes attached thereto, such that the brushes are in biased contact with the commutator. In this regard, the brushes are pre-ground to match the commutator, for example V-shaped or with a concave curvature matching the outer circumference of the commutator. According to the invention the electric motor is characterized in that the brush assembly holder is supported movably in relation to the commutator and a limit stop fixed relative to the housing is provided in order to position the brushes accurately on the commutator.
At the same time, it is possible to keep the gap between the brushes and the contact area of the brush assembly holder on the limit stop fixed relative to the housing comparatively small. In addition, it is possible to keep the gap between the limit stop fixed relative to the housing and the motor shaft or the commutator small. Furthermore, the elements referred to above may be precision formed. Other production tolerances, which, for example, are conditional on pushing a plug-in electronic module into the housing of the electric motor, have no effect in this regard on the positioning accuracy of the brushes. Overall, the brushes may thus be positioned more accurately according to the invention.
According to a further embodiment, the brush assembly holder is movably supported in a straight line within a holder, that is, the brush assembly holder may be displaced in a longitudinal direction towards the commutator substantially without twisting, for example, on pushing a plug-in electronic module into the electric motor's housing.
Appropriate mechanical guides, for example telescopic guides, guide rails or guide grooves may be provided for such straight-line guidance. Such mechanical guides may be formed in particular on the inside of the housing facing towards the brush assembly holder and co-operating with said holder. According to a further embodiment, such a straight-line guide is formed by the engagement of pins provided on the brush assembly holder in elongated slots which run parallel to each other and are situated in the holder. In this regard, the profile of the pins may be matched to the cross-section of the elongated slots such that the pins are received in the relevant elongated slot so as to be secured against twisting and/or are received in the elongated slots in such a manner that they are secured against lifting out of said slots.
The limit stop fixed relative to the housing may co-operate with the brush assembly holder, for example with a front edge of said holder, or with the brush holders in order to position the brushes.
According to a further embodiment, it may be possible to alter the location or position of the limit stop in the housing of the electric motor. Consequently, it is possible to compensate for production tolerances and installation errors which result in faulty positioning of the brushes on the commutator. An adjustment means, an adjusting screw for example, which co-operates with the limit stop, may be provided for this purpose in order to alter the location or position of the limit stop within the housing. Such an adjustment means may also be accessible from the outside of the housing with the result that the limit stop's location or position in the housing may be optimised individually for each electric motor during assembly, for example by means of a production robot with optimising function.
To adjust the limit stop, it may be formed as a tongue in the electric motor's housing with an end which is formed in one piece with the housing or is moulded onto said housing, and with a free end the location of which may be altered using the adjustment means, for example by the application of force and bending of the housing tongue. In this case, a gap may be formed between the limit stop and a portion of the housing; the width of said gap may be adjusted using the adjustment means. The adjustment means may be designed such that the gap width is continuously alterable, by tightening an adjusting screw for example. The adjustment means may, according to a further embodiment, also be designed such that the gap width is only alterable in discrete steps, for example by inserting or removing spacer elements into or from the gap. In this way it is also possible to compensate production engineering tolerances and installation errors in particular.
In this regard, the brush assembly holder may be moved beyond the defined operating position on the housing of the electric motor or of a drive unit or of a plug-in element which may be pushed into such a housing, whereby the limit stop fixed relative to the housing restricts the brush assembly holder's movability or adjustment such that the brushes are positioned accurately on the commutator. In order to maintain optimised positioning of the brushes, the brush assembly holder may be biased towards the limit stop by means of a restoring means. In order to maintain optimum positioning of the brushes, the brush assembly holder is thus biased against the limit stop by means of a restoring means, for example by means of restoring springs or flexible conductors. Such a restoring means may itself be electrically conductive in order to connect the electrically conductive brush holders with connection devices, for example connector plugs, of the electric motor so as to be electrically conductive. For this purpose the restoring means may, for example, comprise elastic, electrically conductive lugs or wire structures.
The brush holders may be formed as elastic leaf springs clamped on one side on the brush assembly holder, said springs each holding one brush on their front end in order to bias the brushes radially inwards against the commutator. It is also possible according to the invention to realise other configurations of leaf springs to support the brushes of the electric motor, for example leaf springs bent into a v-shape or the like.
According to a further aspect of the present invention, an electric drive unit for motor vehicles is also provided with an electric motor as described above. Such an electric drive unit may be provided, for example, for electric window lifts, in particular for cable-controlled window lifts, or may be designed as an electric actuator unit for the generation of rotary drive forces.
The invention will be described in the following in an exemplary manner by reference to the associated drawings from which further features, advantages and objects to be achieved will emerge and wherein:
Identical reference numbers in the Figures identify elements or groups of elements which are identical or substantially alike.
According to
During operation of the electric motor, brushes 22 slide on commutator bars 23 and in doing so are excited to oscillations. These oscillations are directed on one hand substantially radially outwards, that is, away from commutator bar 23, and on the other hand, to a lesser extent, also necessarily in the axial direction of motor shaft 20. Such oscillations may lead to the electric motor developing an undesirable noise.
According to
According to
Plug-in electronic module 4 is pushed into the lateral aperture of motor housing portion 3 (cf.
As may be seen in
Oblong plug-in electronic module 4, however, represents a comparatively long lever which runs contrary to these requirements since even small tolerances during installation of plug-in electronic module 4 in the housing of drive unit 1 will lead to comparatively large deviations in the position of brushes 22 on commutator 23. In order to minimise these position deviations, according to the invention, brush assembly holder 7 is movably supported on panel-shaped mount 8, and thus forms a virtually independent component in order to compensate tolerances during installation of plug-in electronic module 4.
According to
According to
According to
According to the present invention, in the housing of drive unit 1 is provided a limit stop 13 fixed relative to the housing which is positioned such that the gap between the contact surface of limit stop 13 with brush assembly holder 7 and motor shaft 20 is matched precisely to the aforementioned gap between brushes 22 and the front edge of brush assembly holder 7, which is in contact with limit stop 13 in the electric motor's operating position. Without limit stop 13, the front edge of brush assembly holder 7 would, in its resting position, project beyond the contact surface of limit stop 13 when pins 10 are in contact with the front end of elongated slots 9 due to the bias exerted by elastic conductors 11. According to the invention, limit stop 13 fixed relative to the housing enables exact positioning of brushes 22 on commutator 23. Since the gap between limit stop 13 fixed relative to the housing and motor shaft 20 is small by comparison with the overall length of plug-in electronic module 4, according to the invention, brushes 22 may be positioned highly accurately without production or installation tolerances of plug-in electronic module 4 playing any role in this case.
Other restoring elements, for example restoring springs, which elastically bias brush assembly holder 7 towards the front end of mount 8 in relation to front block 6 may also be provided instead of elastic conductors 11. These restoring elements may be used in the same way for electric contacting of leaf springs 21 and brushes 22, or pins 10 may be connected so as to be electrically conductive to leaf springs 21, and electric contact tongues, which are connected so as to be electrically conductive to connector plug 5, may be provided in the region of elongated slots 9.
As shown in
As indicated by the inset on the top left of
According to a further embodiment (not shown), the position or location of the limit stop in the housing may be altered by an adjustment means, for example a screw or a spacer element. In this regard the limit stop may be formed as a tongue joined on one side to the housing or as a tongue formed on said housing whereby a gap is formed between the limit stop and a housing portion situated opposite it, the width of which may be altered using the adjustment means previously mentioned. Production engineering and assembly tolerances may also be compensated in this way.
In order to minimise production tolerances of the housing even further, it is possible according to the invention to form the housing of the drive unit and the limit stop from a common tool, in particular by injection moulding out of a plastic, which is designed such that a demoulding direction for demoulding of bearing supports or points of the electric motor's rotor shaft and limit stop is the same.
The following procedure is followed for installing drive unit 1: first of all the housing is fitted with motor shaft 20, commutator 23 and the field frame (not shown) and plug-in electronic module 4 is created as shown in
During installation of the drive unit, as described above, it is possible to carry out continuous quality checking in order to determine whether brushes 22 are optimally positioned. Deviations from the optimum position may be compensated during production, by appropriately modifying the position of the brushes on leaf springs 21 for example and/or the fixed support of leaf springs 21 on brush assembly holder 7 and/or the front edge of brush assembly holder 7 and/or the location of fixed housing limit stop 13 and/or the contact surface of limit stop 13 fixed relative to the housing in order to ensure optimum positioning of brushes 22. As will easily be apparent to the person of average skill in the art, the measures referred to above may also be carried out effortlessly during the production process so that, according to the invention, it is possible to manufacture an electric drive unit with low operating noises at low manufacturing costs.
As will easily be apparent to the person of average skill in the art on the basis of
Number | Date | Country | Kind |
---|---|---|---|
20 2004 015 271.1 | Sep 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/54781 | 9/23/2005 | WO | 00 | 5/15/2009 |