This application is based on and claims the priority under 35 U.S.C. §119 of German Patent Application 101 54 941.5, filed on Nov. 8, 2001, the entire disclosure of which is incorporated herein by reference.
The invention relates to a direct drive arrangement including an electric motor, for driving the weaving reed of a loom, whereby the drive arrangement includes a moving part designated as a rotor and a stationary part designated as a stator with an air gap therebetween, and with the weaving reed rigidly connected to the rotor.
U.S. Pat. No. 6,418,972 (Krumm et al.) and corresponding German Patent Laying-Open Document 100 21 520 A1 disclose a direct drive for the reed of a loom of the general type mentioned above. The entire disclosure of U.S. Pat. No. 6,418,972 is incorporated herein by reference. The known direct drive arrangement comprises an integrated direct drive electric motor and does not require any intervening transmission means between the electric motor and the reed. A first embodiment of the known arrangement involves a circular coaxial drive that is arranged essentially rotationally symmetrically about the reed support shaft, which carries the reed to cause a pivoting oscillation of the reed about the axis of the reed support shaft. A second embodiment of the known arrangement involves an arcuate “linear” drive that oscillates or pivots in an angularly synchronous manner with the reed along an arc path. In this linear drive, the pivot or oscillation axis of the oscillating motion of the reed is located within the structural elements of the reed or the reed drive.
It should be noted that the prior art “linear” drive does not involve true straight line linear motor components producing a straight line linear motion, but rather refers to a motor with arcuate components that produce an arcuate pivoting motion so that the reed oscillates or pivots back and forth along an arc path. In both embodiments of the known arrangement, the reed support shaft itself can be either a stationary fixed component or a moving component, about which the reed pivots in an oscillating manner, or the reed is rigidly fixed to the reed support shaft, which forms the rotor and pivots about its own longitudinal axis.
In both embodiments of the known arrangement, either the fixed component of the motor carries permanent magnets while the movable component of the motor is energized with a driving current, or the movable component of the motor carries the permanent magnets while the fixed or stationary component of the motor is energized by a driving current. Alternatively, at least a part or portion of the motor may be both provided with permanent magnets and energized with a driving current.
In view of the relatively small available installation space for the known embodiments of the direct drive arrangement, it is difficult to develop the rather large rotational moments or torques that are required for driving a typical reed of a modern high speed loom. Thus, it has been found that both embodiments of the known direct drive arrangement are preferably to be improved in order to increase the rotational moments or torques that can be achieved. It should further be noted that attempts to increase the size of the known arrangements by allocating a larger installation space for each respective drive arrangement would undesirably increase the total space requirement or bulkiness of the drive, and would also disadvantageously increase the total mass and the associated inertial moment of the moving components of the drive arrangement itself, which in turn would directly increase the required torque for achieving the required drive power. Therefore, some other technical improvement is still desirable.
In view of the above, it is an object of the invention to provide a direct drive arrangement for the reed of a loom, with optimum utilization of the available installation space, and with comparatively large surface areas of the active surfaces of the electric drive motor that are required for generating or developing the rotational torque and drive force and power, without correspondingly increasing the total moving mass and the associated mass inertial moment. Another object of the invention is to increase the drive force and drive power that can be generated by the direct drive arrangement, without increasing the total required installation space. The invention further aims to avoid or overcome the disadvantages of the prior art, and to achieve additional advantages, as apparent from the present specification. The attainment of these objects, however, is not a required limitation of the claimed invention.
The above objects have been achieved according to the invention, in a direct drive arrangement for driving the reed of a loom, comprising an electric motor, and particularly an integrated electric motor comprising at least one moving component designated as a rotor and at least one stationary component designated as a stator, whereby the reed is connected to the at least one rotor by a suitable reed support, e.g. a reed sley or reed battens.
Throughout this specification, the term “rotor” designating the moving component or components of the electric motor drive arrangement does not imply a complete rotational or rotary movement, and does not imply or require a circular or rotationally symmetrical shape of the rotor. Instead, the rotor (and therewith the reed) carries out a pivoting motion characterized by a back-and-forth oscillation on an arc path (e.g. an angular portion of a circle), or a straight line linear motion characterized by a back-and-forth oscillation on a straight line path.
These two different types of oscillating motion can be achieved by three different structural embodiments of the electric motor. A first motor embodiment has a rotationally symmetrical or generally circular construction around a pivot axis, and carries out the oscillating pivoting motion described above. A second motor embodiment has an arc-shaped or circular-segment-shaped construction, and carries out the oscillating pivoting motion described above. A third motor embodiment has a straight linear construction, and carries out the straight linear oscillating motion described above. The second and third motor embodiments could both be generally characterized as a non-circular motor or even as a “linear motor”, whereby the non-circular shape of the rotor and of the stator includes either an arcuate shape or a straight linear shape. Thus, it should also be understood that the term “linear motor” does not strictly require a straight line linear motion, but may alternatively involve an arcuate or curved “linear” motion that pivots cyclically back-and-forth along an arc with a radius of curvature about an effective pivot axis.
According to one feature of the first embodiment of the invention, the reed support shaft is embodied as a hollow shaft, so that the radius of the shaft may be significantly increased in comparison to prior art solid shafts, without significantly increasing the mass inertial moment thereof, because the mass of the hollow shaft will be correspondingly less than that of a solid shaft made of the same material and having the same outer diameter. Simultaneously, by displacing the mass to a greater radial distance from the rotation axis, i.e. in the annular wall of the hollow shaft, an increased strength-to-weight ratio of the shaft is achieved.
In one embodiment, the reed support shaft serves directly as the rotor of the electric motor direct drive, and particularly, is arranged as an internal rotor that is located radially inwardly from the stator toward the rotation axis. In such an embodiment, a substantially larger air gap surface or active surface is achieved between the rotor and the stator when using a hollow shaft with a larger diameter in comparison to a solid shaft with a smaller diameter. As a result, the inventive arrangement achieves a large effective driving force in comparison to an internal rotor motor having a solid shaft rotor with the same mass inertial moment as the inventive hollow shaft rotor. Simultaneously, the increased radius of the hollow shaft in comparison to that of a solid shaft of the same mass provides a larger radial lever arm or effective factor for the rotational moment or torque that is to be applied, because the torque is given by the product of the force and the radius. Thus, the rotational moment or torque that can be developed increases, in total, quadratically with the increasing radius of the shaft.
A further embodiment of the invention provides another stator or a system of stators installed in the hollow inner space of the hollow shaft forming the rotor. This inner stator or inner stator system develops a rotational moment or torque in parallel to, and in addition to, the outer stator or stator system arranged radially outwardly from the hollow shaft rotor. Thus, the inner stator system, the reed support shaft as the rotor of the direct drive, and the outer stator system are coaxially arranged relative to each other, about the oscillating pivot axis of the reed. The electric motor direct drive for the reed in this embodiment thus forms a so-called coaxial “sandwich motor” drive, which provides plural effective air gaps, whereby the total effective air gap surface of this drive is nearly doubled in comparison to the provision of a single inner rotor motor. This also leads to almost doubling the torque that can be developed.
The electric motor according to the invention can be constructed and operated generally according to the motor principle of a synchronous servomotor with permanent magnets arranged on the rotor, as disclosed in the above mentioned U.S. Pat. No. 6,418,972, which is incorporated herein by reference. Alternatively, however, the invention further provides that especially the “sandwich motor”, having two coaxial layered stators or stator systems with a rotor or rotor system therebetween, can be embodied as a transverse flux motor, wherein preferably the rotor is similarly provided with permanent magnets. As further alternatives, the inventive motor arrangement can be embodied according to the general principles of a direct current motor, due to the high achievable dynamics or dynamic range, or a reluctance motor, also due to the high achievable dynamics or dynamic range and the simple structure. Another alternative is an embodiment as an asynchronous squirrel cage motor with a short-circuited rotor, a three-phase induction motor. In any event, both the rotor and the stator participate or cooperate in electromagnetically driving the rotor in accordance with generally known principles and structures (e.g. regarding the arrangement of windings and/or permanent magnets).
In the second general embodiment of the invention as mentioned above, the stator and the rotor of the direct drive arrangement are configured with an arcuate shape, and particularly with a structural arrangement to avoid locating the pivoting axis of the reed within the structure of the drive, i.e. the pivot axis of the reed is located outside of its drive. This makes it possible to considerably increase the radius of the pivoting motion about the pivoting axis, and allows a relatively large air gap surface to be achieved, especially in connection with the above described sandwich motor structure. Moreover, the components that are determinative of the mass inertial moment of the weaving reed are located at the height or level of the weaving plane, i.e. above the air gap with respect to a view from the pivot axis. As a particular embodiment feature of the invention, the arc-shaped structure of the stator and of the rotor, as seen on a radial section is respectively formed as an arc segment of a circular ring or annulus. The inner and outer radii of the annular arc segments in this context are finite, i.e. <∞, which means that these arc segments have a circular arc curvature rather than being straight line segments.
Another detail feature of the invention provides that an additional stator can be arranged coaxially relative to the first stator and the rotor, with the rotor arranged between the two stator, and optionally with any number of additional alternating coaxial rotors and stators. This feature can be used in connection with any of the other embodiments of the invention. In a coaxial layered arrangement, the innermost component, e.g. the inner stator or the rotor, can be embodied as a solid shaft. In any event, with this layered sandwich arrangement having two stators and two air gaps, the total air gap surface is substantially doubled, which achieves a relatively high dynamic range, and a relatively high angular velocity of the reed, which ultimately leads to a relatively high weaving speed or loom operation speed in terms of weft shots per minute, in comparison to the prior art.
In the embodiment of the direct drive as a linear electric motor direct drive, the movable parts of the motor are rigidly connected to the reed and are preferably movable along a true linear straight line path, which is preferably oriented horizontally. As a further feature, a first linear motor including a first rotor and a first stator can be arranged above the weaving plane, and a second linear motor comprising a second rotor and a second stator can be arranged below the weaving plane. The moving parts or rotors of these linear drives are each rigidly connected by suitable means, e.g. a reed sley, to the weaving reed.
This embodiment provides the following advantages. On the one hand, the available space below the weaving reed is better utilized in comparison to a coaxially constructed drive. On the other hand, the area or space above the weaving reed is additionally utilized as an installation space for the drive components. The installation space below the weaving reed can be better utilized basically due to the general advantage of the linear drive having a true straight line drive path, whereby an increase of the air gap surface merely increases the mass of the moving parts, without increasing an effective lever arm of the achieved driving force. In comparison, in a coaxially arranged drive system having a pivoting rotor, an increase of the air gap surface leads to an increase of the mass, which is further multiplied by the radius of the rotor, so that the mass inertial moment of such a coaxial drive arrangement increases more drastically than the inertial moment (associated only with the mass) of the moving part of a linear motor moving along a straight line path. Furthermore, dividing the linear drive between respective portions or areas above and below the weaving reed utilizes additional installation space as mentioned above, and also stabilizes the weaving reed motion.
The sandwich motor arrangement according to the invention can also be applied to the linear motor embodiment. Namely, the air gap surface of the linear motor can be enlarged by arranging the movable part (i.e. the rotor) and the stationary part (i.e. the stator) in plural alternating layers in a direction perpendicular to the general back-and-forth motion of the reed. In other words, assuming the typical horizontal motion of the reed, a vertical stacking of alternate rotors and stators achieves a relatively large total air gap surface with a relatively small lateral extent or dimension of the drive in the direction of motion of the reed. That is important, in order not to reduce the space available for the shed formation, e.g. the space for the motion of the heald shafts. The inventive linear drive involving a drive motion along a straight line path can be particularly embodied as a synchronous motor preferably having permanent magnets provided on the rotor, or as a transverse flux motor preferably having permanent magnets provided on the rotor. Alternatively, the linear motor can be embodied as a direct current motor or as a reluctance motor, due to the advantages already mentioned above.
In order that the invention may be clearly understood, it will now be described in connection with example embodiments, with reference to the accompanying drawings, wherein:
While it is not expressly shown in the drawings, the stator 1.3 and the rotor 1.5 are supported relative to each other by any suitable bearings or the like to allow the pivoting motion of the rotor 1.5, and are each equipped respectively with permanent magnets and/or windings, in any conventionally known manner. Thereby, the general schematic arrangement shown in the drawings may be particularly constructed as any suitable form of conventional electric rotor, e.g. a synchronous servomotor, a direct current motor, a reluctance motor, or the like. By appropriate actuation and control of the direct drive motor 1, the rotor 1.5 is caused to pivot or oscillate back-and-forth in an oscillating motion about the pivot axis 1.7, whereby the rotor 1.5 directly carries along and moves the reed sley 1.2 in the corresponding oscillating motion, so as to thereby drive the reed 1.1 in the corresponding oscillating motion for carrying out the weft beat-up. The hollow shaft configuration of the rotor 1.5 advantageously achieves an increased drive torque in comparison to a smaller diameter solid shaft rotor, as discussed above.
As shown in
The drive arrangement 4 shown in
Although the invention has been described with reference to specific example embodiments, it will be appreciated that it is intended to cover all modifications and equivalents within the scope of the appended claims. It should also be understood that the present disclosure includes all possible combinations of any individual features recited in any of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101 54 941 | Nov 2001 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5058628 | Spiller et al. | Oct 1991 | A |
5499662 | Vogel et al. | Mar 1996 | A |
5518039 | Haeussler et al. | May 1996 | A |
6065503 | Berktold et al. | May 2000 | A |
6418972 | Krumm et al. | Jul 2002 | B2 |
Number | Date | Country |
---|---|---|
727550 | Nov 1942 | DE |
4405776 | Aug 1995 | DE |
19821094 | Jul 1999 | DE |
10021520 | Nov 2001 | DE |
0268762 | Jun 1988 | EP |
0440579 | Aug 1991 | EP |
0892100 | Jan 1999 | EP |
1152077 | Nov 2001 | EP |
59199841 | Nov 1984 | JP |
Number | Date | Country | |
---|---|---|---|
20030084951 A1 | May 2003 | US |