The present disclosure relates to an electric motor, in particular for a hybrid drive of a vehicle, comprising a rotor and a stator, wherein the stator surrounds the rotor and the rotor is fastened to a rotor carrier.
In a motor vehicle with hybrid drive, the driving resistance can be overcome from two independent energy sources, such as fuel of an internal combustion engine and electrical energy from a traction battery of an electric motor, by conversion into mechanical energy. Hybrid drives are known in which the electric motor is situated at a second position in series with the internal combustion engine (P2 hybrid topology). Between the internal combustion engine and the electric motor there is arranged a separating clutch which, in the open state, permits purely electric driving and, in the closed state, transmits the torque of the internal combustion engine to the drive wheel. A further object of the separating clutch consists in starting the internal combustion engine. For this purpose, by means of a targeted increase of the torque of the electric motor and by closing the separating clutch, energy is transmitted to the stationary internal combustion engine and the latter is thus accelerated. Here, the electric motor is composed of the active parts of stator and rotor, wherein the stator surrounds the rotor, which is arranged on a rotor carrier.
For the fastening of a rotor laminated core, which forms the rotor, to the rotor carrier, it is known for the rotor laminated core to be connected to the rotor carrier in the direction of the transmission. Different methods are known for this purpose. For example, use may be made of a transverse interference fit between the rotor laminated core and the rotor carrier, a tongue-and-groove connection between the rotor laminated core and the rotor carrier, or a spline connection. Special connections by means of the transverse interference fit generate high stresses in the rotor laminated core, which must be taken into consideration in the design of the lamination, the position of the magnets and in the electromagnetic configuration. Under some circumstances, the electric motor cannot be fully utilized with regard to its power capacity, because there are geometric limitations with regard to the positioning of the magnets.
Although the use of tongue-and-groove connection reduces component stresses, it is however necessary in this case for the rotor laminated core to be additionally axially fixed in order to prevent an axial or radial migration and additional play of the rotor laminated core in a circumferential direction. A degree of radial play between rotor laminated core and rotor carrier may in this case lead to imbalances and a varying air gap, which can result in bearing damage and/or power losses of the electric motor. A degree of play in a circumferential direction can lead to changes in abutting contact in the event of traction-overrun changes, and can give rise to wear.
The present disclosure discloses an electric motor, wherein the full power capacity of the motor can be utilized and a degree of play in a circumferential direction between the rotor laminated core and the rotor carrier is reliably prevented.
According to the disclosure, a rotor laminated core of the rotor is connected to the rotor carrier by means of a tongue-and-groove connection and a transverse interference fit. Owing to the combination of the transverse interference fit with the tongue-and-groove connection, an axial and a radial degree of play of the rotor laminated core on the rotor carrier is eliminated, but without generating high stresses as a result of the transverse interference fit. The power capacity of the electric motor can thus be fully utilized.
It is advantageously the case that, to form the transverse interference fit, the circular rotor laminated core has, for bracing on the circular rotor carrier, a minimally smaller radius than the rotor carrier. The rotor laminated core, which has the relatively small radius, can be easily expanded during mounting on the rotor carrier, as a result of which said rotor laminated core bears firmly against the rotor carrier after being seated thereon. This connection is in this case configured such that, at rotational speed and under thermal influences, the rotor laminated core always maintains contact with the rotor carrier. In this way, the centering effects are maintained at all times during the operation of the electric motor.
In one embodiment, to form the transverse interference fit, the rotor laminated core has, on the side facing toward the rotor carrier, multiple local contact points for abutment against the rotor carrier. Said local contact points are distributed over the entire connecting region between rotor laminated core and rotor carrier, such that an adequately strong transverse interference fit is generated.
In one alternative embodiment, to form the transverse interference fit, the rotor laminated core bears entirely against a full circumference of the rotor carrier. In this way, the rotor laminated core bears entirely against the rotor carrier and is pressed against the rotor carrier owing to the relatively small radius.
In one embodiment, the tongue-and-groove connection is formed from a tongue out of the rotor laminated core and which faces toward the rotor carrier and which engages into an oppositely situated groove formed on the rotor carrier. In this way, freedom from play in a circumferential direction is achieved by means of the targeted positioning of the degree of play in the tongue-and-groove connection. In each case one separate tongue-and-groove connection is provided for the transmission of traction torques and overrun torques. Alternatively, the tongue-and-groove connection may however also be formed from a groove on the rotor and a tongue of the rotor carrier.
In one embodiment, for the transmission of a rotational movement from the rotor laminated core to the rotor carrier, the tongue bears laterally against the groove in a movement direction of the rotor. It is thus reliably possible to realize a play-free transmission of the traction or overrun torques from the rotor to the rotor carrier.
In one embodiment, magnet pockets are formed radially over the circumference within the rotor laminated core, in which magnet pockets there is arranged in each case one magnet. Said magnets have an operative connection to a coil which forms the stator, by the interaction of which with the rotor both the driving mode (traction torque) and the generator mode (overrun torque) can be realized.
To reduce occurring component stresses as best as possible, the local contact points of the transverse interference fit and/or the tongue-and-groove connection are arranged between two magnet pockets.
In one alternative embodiment, the local contact points of the transverse interference fit are arranged below a magnet. In this way, too, the component stress is eliminated through optimum positioning of the contact points.
The rotor carrier is advantageously in the form of a hub or a clutch. Here, the movement of the rotor is reliably transmitted by the rotor laminated core to the hub and/or the clutch.
Embodiments according to the present disclosure are discussed in more detail with reference to the figures, in which:
Said drivetrain 1 comprises an internal combustion engine 2 and an electric motor 3 arranged in series therewith. Directly downstream of the internal combustion engine 2, between the internal combustion engine 2 and the electric motor 3, there is arranged a separating clutch 4. The internal combustion engine 2 and separating clutch 4 are connected to one another by means of a crankshaft 5. The electric motor 3 has a rotatable rotor 6 and a fixed stator 7. The drive output shaft 8 of the separating clutch 4 leads to a transmission 9, which comprises a coupling element (not illustrated in any more detail), for example a second clutch or a torque converter, which is arranged between the electric motor 3 and the transmission 9. The transmission 9 transmits the torque generated by the internal combustion engine 2 and/or by the electric motor 3 to the drive wheels 10 of the hybrid vehicle. Here, the electric motor 3 and the transmission 9 form a transmission system 11.
The separating clutch 4 arranged between the internal combustion engine 2 and the electric motor 3 is closed in order, while the hybrid vehicle is travelling, to start the internal combustion engine 2 by means of the torque generated by the electric motor 3 or, during boost operation, to realize travel with drive provided by the internal combustion engine 2 and electric motor 3.
As illustrated in
In the rotor laminated core 12, there are formed magnet pockets 14, 15 in which there are arranged in each case two magnets 16, 17, which are for example inclined at an obtuse angle with respect to one another. On that side of the rotor laminated core 12 which faces toward the hub 13, there are formed multiple cams 18 which are braced against the hub 13. Said cams 18 are advantageously formed at uniform intervals around the entire circumference of the rotor laminated core 12 and pressed against the hub 13 and thus form the transverse interference fit, which permits a radial and axial movement of the rotor 3.
In addition to the transverse interference fit,
To further reduce the stresses between rotor laminated core 12 and hub 13, a recess 25 is formed into the rotor laminated core 12 in front of each tongue-and-groove connection 19, 22, in front of the region of abutment of groove 23, 24 and tongue 20, 21 (
The discussed solution thus relates to a combination composed of two tongue-and-groove connections 19, 22 and a reduced transverse interference fit for transmitting the torque from the rotor 6 to the rotor carrier 13. Radial and axial movement of the rotor 6 is in this case realized by means of local contact points in the form of cams 18 between rotor 6 and hub 13, which have a small overlap. The transmission of torque itself is realized via the respective tongue-and-groove connection 21, 22.
1 Drivetrain
2 Internal combustion engine
3 Electric motor
4 Separating clutch
5 Crankshaft
6 Rotor
7 Stator
8 Drive output shaft
9 Transmission
10 Drive wheels
11 Transmission system
12 Rotor laminated core
13 Hub
14 Magnet pocket
15 Magnet pocket
16 Magnet
17 Magnet
18 Cam
19 Tongue-and-groove connection
20 Tongue
21 Tongue
22 Tongue-and-groove connection
23 Groove
24 Groove
25 Recess
Number | Date | Country | Kind |
---|---|---|---|
10 2015 205 749.6 | Mar 2015 | DE | national |
This application is the U.S. National Phase of PCT Appln. No. PCT/DE2016/200126 filed Mar. 9, 2016, which claims priority to German Application No. DE 10 2015 205 749.6 filed Mar. 31, 2015, the entire disclosures of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2016/200126 | 3/9/2016 | WO | 00 |