The present invention relates to an electric motor, a stator of the electric motor, and a manufacturing method for the stator. More specifically, the present invention relates to an electric motor having a structure in which teeth made of a powder magnetic core material are fitted to a yoke, a stator of such an electric motor, and a manufacturing method for the stator.
The teeth 12 are parts of the stator 11 that function as field poles. Typically, the teeth 12 are formed of steel. However, since the specific resistance of steel is 10−6 Ωm or less, the eddy-current loss of the teeth 12 is relatively great. Japanese Laid-Open Patent Publication Nos. 10-225038, 2004-289899, 2003-199319, 2002-165410, 2000-184634, and 11-275781 each disclose a tooth 12 shown in
Materials for forming the tooth 12 include powder magnetic core material. The powder magnetic core material refers to a material formed by mixing powder of metal magnetic material such as iron with resin. The tooth 12 is formed by pressure molding a powder magnetic core material. The specific resistance of the tooth 12, which is formed of a powder magnetic core material, is 10−4 Ωm or more. Thus, the eddy-current loss of the tooth 12 is reduced.
Referring to
Typically, the yoke 14 is formed of steel. Specifically, the yoke 14 is formed by laminating steel plates. Alternatively, the yoke 14 may be formed of a powder magnetic core material to reduce the eddy-current loss.
A tooth 12 made of a powder magnetic core material is easily damaged when fitted to the yoke 14.
When the tooth 12 made of a powder magnetic core material is fitted to the yoke 14 made of laminated steel plates, a part in the end 12b of the tooth 12 that contacts a wall surface defining the groove of the yoke 14 is likely to be damaged. Also, when the tooth 12 is fitted to the yoke 14, the end 12b of the tooth 12 is likely to be broken.
In the case where the tooth 12 and the yoke 14 are both made of a powder magnetic core material, fitting the tooth 12 to the yoke 14 is likely to damage not only the tooth 12, but also the wall surface defining the groove.
Accordingly, it is an objective of the present invention to suppress damages of teeth made of a powder magnetic core material and a yoke when fitting the teeth to the yoke.
To achieve the foregoing objective, and in accordance with a first aspect of the present invention, a stator of an electric motor is provided. The stator of an electric motor includes teeth, coils each being wound about one of the teeth, and a yoke having fitting openings each receiving one of the teeth. Each tooth has a tooth main body formed of a powder magnetic core material and a tooth reinforcing portion. The tooth reinforcing portion is molded integrally with at least a part of a surface of the tooth main body, and has a higher mechanical strength than that of the tooth main body. Each tooth is fitted to the corresponding fitting opening in such a manner that the tooth reinforcing portion contacts a wall surface that defines the fitting opening.
In accordance with a second aspect of the present invention, an electric motor is provided. The electric motor includes a stator and a rotor. The stator includes teeth, coils each being wound about one of the teeth, and a disc-shaped yoke having fitting holes each receiving one of the teeth. Each tooth has a tooth main body and a tooth reinforcing portion. The tooth main body is formed of a powder magnetic core material. The tooth reinforcing portion is integrally molded with at least a part of a surface of the tooth main body, and has a higher mechanical strength than that of the tooth main body. Each fitting hole extends through the yoke from a front surface to a back surface. Each tooth is fitted to the corresponding fitting hole in such a manner that the tooth reinforcing portion contacts a wall surface that defines the fitting hole. The rotor has a disc-shaped rotor main body and a shaft. The rotor main body is coaxially arranged with the yoke, and the shaft is coaxially arranged with the rotor main body. The rotor main body is displaced in an axial direction from the teeth.
In accordance with a third aspect of the present invention, a manufacturing method for a stator of an electric motor is provided. The stator has a plurality of teeth each having a tooth main body formed of a powder magnetic core material. The method includes: molding a tooth reinforcing portion integrally with at least a part of a surface of each tooth main body, the tooth reinforcing portion having a higher mechanical strength than that of the tooth main body; forming a yoke having a fitting openings each receiving one of the teeth; winding a coil about each of the teeth; and fitting the teeth to the fitting openings in such a manner that each tooth reinforcing portion contacts a wall surface defining the corresponding fitting opening.
One embodiment of the present invention will now be described with reference to
As shown in
Each tooth 54 is substantially T-shaped as viewed in the axial direction of the stator 60. In the tooth 54, a portion that extends in the radial direction of the stator 60 is referred to as a proximal portion, and a portion that extends from both sides in the circumferential direction of the stator 60 is referred to as a head. The head of the tooth 54 faces the rotor 52. The head of the tooth 54 is formed relatively wide so that sufficient magnetic lines of force passing through the tooth 54 reach the rotor 52.
As shown in
The tooth main body 54a is formed of a material obtained by mixing magnetic material powder and resin. The magnetic material may be, for example, a metal such as iron, aluminum, and titanium, or an alloy containing such metal. The resin contained in the powder magnetic core material is an electrical insulating resin. The tooth main body 54a is formed by pressure molding the powder magnetic core material.
The specific resistance of the tooth main body 54a is equal to or more than one hundred times that of steel. For example, the specific resistance of the tooth main body 54a is 10−4 Ωm or more.
The tooth reinforcing portion 54b is provided at an end of the proximal portion of the tooth main body 54a. Specifically, the tooth reinforcing portion 54b is shaped like a channel and covers part of side surfaces 70 of the proximal portion of the tooth main body 54a, which are parallel to the axis of the stator 60, and the end face of the proximal portion of the tooth main body 54a. The tooth reinforcing portion 54b forms parts of the side surfaces 70 of the proximal portion of the tooth 54, and an end face 72 of the tooth 54. The tooth reinforcing portion 54b is molded integrally with the tooth main body 54a.
The tooth reinforcing portion 54b is made of a magnetic material having a mechanical strength higher than that of the tooth main body 54a. The tooth reinforcing portion 54b is, for example, formed of steel, stainless steel, soft magnetic stainless steel, or aluminum.
As shown in
The tooth reinforcing portion 54b having such a structure has a volume ratio of the tooth reinforcing portion 54b in the tooth 54 less than that of the tooth 54 shown in
The tooth reinforcing portion 54b shown in
The coil 58 is wound about the tooth 54. For example, enameled copper wires are used as the coils 58.
The yoke 56 is formed to have a cylindrical shape by laminating annular steel plates. Notches the number of which is the same as the number of the teeth 54 are formed on the inner circumferential portion. The notches are arranged in each steel plates at equal angular intervals. As shown in
The distal ends of the proximal portions of the teeth 54 are engaged with the fitting grooves 56b. The shape and size of a portion of the tooth 54 that is engaged with the fitting groove 56b, that is, the shape and size of the tooth reinforcing portion 54b, agree with those of a wall surface defining the fitting groove 56b. According to this configuration, the tooth reinforcing portion 54b protects a part of the proximal portion of the tooth 54 that contacts a wall surface of the yoke 56 that defines the fitting groove 56b.
After all the teeth 54 are engaged with the yoke 56, the tooth reinforcing portions 54b may be welded to the steel plates forming the yoke 56 on the surface of the yoke 56. In this case, the teeth 54 are firmly fixed to the yoke 56.
A shaft 52a of the rotor 52 is formed of steel. The rotor main body 52b is made of a permanent magnet or an electromagnet. The material of the rotor main body 52b is, for example, steel or a powder magnetic core material.
The rotor 52 is arranged coaxially with the yoke 56, and is rotatable relative to the stator 60 about the center axis of the yoke 56.
As shown in
As shown in
In the case where any of the teeth 54 shown in
A procedure for manufacturing the stator 60 according to the present invention will be described with reference to
At step S10, the teeth 54 are formed.
When step S20 is completed, the process proceeds to step S22. In step S22, the tooth reinforcing portion 54b is placed in the die 80.
When step S22 is completed, the process proceeds to step S24. In step S24, as shown in
When filling the die 80 with the powder magnetic core material 54d , the powder magnetic core material 54d and the die 80 are preferably warmed in advance. If these components are warmed, the powder magnetic core material 54d and the higher fatty acid based lubricant on the inner surface of the die 80 react to each other in a stable manner in the steps after the filling. Thus, a uniform lubricant film is easily formed between the powder magnetic core material 54d and the inner surface of the die 80. For example, the powder magnetic core material 54d and the die 80 are heated to a temperature equal to or more than 100° C.
When step S24 is completed, the process proceeds to step S26. In step S26, the magnetic core material 54d placed in the die 80 is subjected to the pressure molding in a warm state. In this embodiment, the temperature of a portion in which the die 80 contacts the magnetic core material 54d is preferably in a warm state between 100° C. and 225° C., and more preferably in a warm state between 100° C. and 180° C. With the die 80 being warmed to be in such a warm state, pressure is applied to the magnetic core material 54d through an opening of the die 80. For example, if iron powder is contained in the magnetic core material 54d, a pressure the lower limit of which is 700 MPa is applied to the magnetic core material 54d to ensure a sufficient biding strength between the tooth main body 54a and the tooth reinforcing portion 54b. In this case, no upper limit of the applied pressure is set. Through the execution of step S24, the tooth 54, which is formed by integrally molding the tooth main body 54a and the tooth reinforcing portion 54b, is formed in the die 80. Next, a predetermined force is applied to the die 80 to remove the tooth 54 from the die 80. Step S26 is thus competed, and step S10 is completed.
The process then proceeds to step 12 of
Then, the process proceeds to step S14. In step S14, the coil 58 is wound about the tooth 54. In step S16, which will be discussed below, the tooth 54 is fitted to the yoke 56. Thus, the coil 58 is wound about the tooth 54 except for a part of the tooth 54 that is fitted to the yoke 56.
Then, the process proceeds to step S16. In step S16, the tooth 54, about which the coil 58 is wound, is fitted to the yoke 56. At this time, the tooth 54 is fitted to the yoke 56 such that the tooth reinforcing portion 54b contacts the wall surface of yoke 56 that defines the fitting grooves 56b.
After fitting the tooth 54 to the yoke 56, the tooth 54 may be welded to the yoke 56. For example, the surfaces of the parts at which the tooth reinforcing portion 54b contacts the steel plates forming the yoke 56 are welded.
Through the procedure from step S10 to step S16, the stator 60 having the teeth 54 formed of the powder magnetic core material 54d, the yoke 56, and the coils 58 is completed.
The order in which steps S10 to S16 are executed is not limited to the above described one. For example, the yoke 56 may be formed prior to the teeth 54. That is, step S12 may be executed prior to step S10.
Alternatively, the step for winding the coils 58 about the teeth 54 may be executed any time after the teeth 54 are formed and before the teeth 54 are fitted to the yoke 56. That is, step S14 may be executed prior to step S12.
Further, in step S10, a plurality of teeth 54 may be molded to be an integral component such that the heads of the teeth 54 are coupled to one another with coupling members made of the powder magnetic core material 54d. In this case, at the opening of the die 80, spaces between the teeth 54 are filled with the powder magnetic core material 54d, and the pressure molding is performed to form the teeth 54 shown
Next, the yoke 56 formed of a powder magnetic core material will be described. Components other than the yoke 56 are the same as described above. Like or the same reference numerals are given to those components that are like or the same as the corresponding components in the electric motor 50 described above, and detailed explanations are omitted.
The yoke main body 56a is formed of a powder magnetic core material. The powder magnetic core material is the same as the powder magnetic core material used for forming the tooth main body 54a.
The specific resistance of the yoke main body 56a made of the powder magnetic core material is equal to or more than one hundred times that of a yoke main body made of steel. For example, the specific resistance of a yoke main body 56a made of a powder magnetic core material containing iron powder and resin is 10−4 Ωm or more. Therefore, the eddy-current loss generated in the yoke main body 56a formed of a powder magnetic core material is less than the eddy-current loss generated in the yoke main body made of steel.
The yoke reinforcing portions 56c are integrally molded with the yoke main body 56a at the wall surface defining the fitting grooves 56b. The yoke reinforcing portions 56c are made of a magnetic material having a mechanical strength higher than that of the yoke main body 56a. For example, the yoke reinforcing portions 56c are made of steel, stainless steel, soft magnetic stainless steel, or aluminum. Thus, the wall surface defining the fitting grooves 56b is reinforced by the yoke reinforcing portions 56c.
In the yoke 56 provided with the yoke main body 56a made of a powder magnetic core material, a yoke reinforcing layer 56d may be molded integrally with the upper surface of the yoke main body 56a so as to be coaxial with the yoke main body 56a as shown in
The yoke reinforcing layer 56d may be formed separately from the yoke main body 56a, and may be attached to the upper or lower surface of the yoke main body 56a thereafter. In this case, the yoke reinforcing layer 56d may be fixed to the yoke main body 56a with screws 56e as shown in
The teeth 54 are fitted to the yoke 56 such that the tooth reinforcing portions 54b contact the wall surface of yoke 56 that defines the fitting grooves 56b. The wall surface is entirely or partly protected by the yoke reinforcing portions 56c or the yoke reinforcing layer 56d. Thus, when the teeth 54 are fitted to the yoke 56, the wall surface of the fitting grooves 56b are prevented from being damaged.
After all the teeth 54 are fitted to the fitting grooves 56b, the tooth reinforcing portions 54b and the yoke reinforcing portion 56c may be welded to each other on the surface of the yoke 56. Alternatively, the tooth reinforcing portions 54b and the yoke reinforcing layer 56d are welded to each other. In this case, the teeth 54 are firmly fixed to the yoke 56.
Next, the procedure for manufacturing the yoke 56 having the yoke main body 56a made of a powder magnetic core material will be described with reference to
First, in step S30, a higher fatty acid based lubricant is applied to an inner surface of a die for molding the yoke 56.
When step S30 is completed, the process proceeds to step S32. In step S32, the yoke reinforcing portions 56c are placed in the die.
When step S32 is completed, the process proceeds to step S34. In step S34, the die, in which the yoke reinforcing portions 56c are placed, is filled with a powder magnetic core material.
When the die is filled with the powder magnetic core material, the powder magnetic core material and the die are preferably heated. For example, the powder magnetic core material and the die are heated to a temperature equal to or more than 100° C.
When step S34 is completed, the process proceeds to step S36. In step S36, the magnetic core material placed in the die is subjected to the pressure molding in a warm state. For example, the temperature of a portion in which the die contacts the magnetic core material is preferably between 100° C. and 225° C., and more preferably in a warm state between 100° C. and 180° C. Thereafter, a pressure the lower limit of which is 700 MPa is applied to the magnetic core material in the die through the opening of the die to pressure mold the yoke 56. Next, a predetermined force is applied to the die to remove the yoke 56 from the die.
When molding the yoke 56 shown in
When molding a yoke 56 shown in
Thereafter, steps S14 to S16 in
The present invention may be applied to electric motors that are different from commonly known electric motors. For example, the present invention may be applied to an axial motor 100. Like or the same reference numerals are given to those components that are like or the same as the corresponding components of the above embodiments and detailed explanations are omitted.
The tooth main body 54a is formed of a powder magnetic core material. The tooth reinforcing portion 54b is made of a magnetic material having a mechanical strength higher than that of the tooth main body 54a. The powder magnetic core material forming the tooth main body 54a is the same as described above. The material forming the tooth reinforcing portion 54b is also the same as described above.
The tooth 54 has a sectoral shape when viewed from above or below, and has a substantially T-shape when viewed from the side. As shown in
In the tooth main body 54a, a portion that extends toward the stator 60 is referred to as a proximal portion, and a portion that extends from one side of the proximal portion in the radial and circumferential directions of the rotor 52 is referred to as a head. The tooth reinforcing portion 54b is provided at an end of the proximal portion of the tooth main body 54a. Specifically, the tooth reinforcing portion 54b has such a shape that covers the end face of the proximal portion of the tooth main body 54a and surround the four sides of the end of the proximal portion. The tooth reinforcing portion 54b is molded integrally with the tooth main body 54a. The area of the tooth 54 in which the tooth reinforcing portion 54b is formed corresponds to a portion that contacts a wall surface defining the fitting hole 90.
The coil 58 is wound about the proximal portion of the tooth 54. In the proximal portion of the tooth 54, the coil 58 is not wound about a portion in which the tooth reinforcing portion 54b is formed.
As shown in
The tooth 54, about which the coil 58 is wound, is fitted to each fitting hole 90 formed in the yoke 56. Accordingly, the stator 60 is formed.
The rotor 52 includes a shaft 52a, and the rotor main body 52b attached to the shaft 52a. In this embodiment, the rotor main body 52b is disc-shaped. The shaft 52a of the rotor 52 is arranged to be substantially aligned with the center axis of the disc-shaped yoke 56.
As shown in
As shown in
Alternatively, the disc-shaped yoke main body 56a and the disc-shaped yoke reinforcing layer 56d may be formed separately from each other, and the yoke reinforcing layer 56d may be attached to the upper or lower surface of the yoke main body 56a to form the yoke 56. In this case, the yoke reinforcing layer 56d may be fixed to the yoke main body 56a with the screws 56e. Alternatively, the yoke reinforcing layer 56d may be fixed to the yoke main body 56a through shrink fitting. In this case, the yoke reinforcing layer 56d is heated to be thermally expanded. Then the yoke reinforcing layer 56d is fixed to the yoke main body 56a. Subsequently, the yoke main body 56a is cooled.
The heads of the teeth 54 provided in the stator 60 of the axial motor 100 may be coupled to each other by means of coupling members made of a powder magnetic core material or a resin. That is, a number of teeth may be molded to be an integral component.
The stator 60 in the axial motor 100 is manufactured through the same method and the same steps as described above.
Number | Date | Country | Kind |
---|---|---|---|
2006-150413 | May 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2308028 | Rose et al. | Jan 1943 | A |
3159762 | Haifley et al. | Dec 1964 | A |
4241274 | Brammerlo | Dec 1980 | A |
5918360 | Forbes et al. | Jul 1999 | A |
6472780 | Kikuchi et al. | Oct 2002 | B2 |
7211918 | Migita et al. | May 2007 | B2 |
20030168926 | Zepp et al. | Sep 2003 | A1 |
20040212267 | Jack et al. | Oct 2004 | A1 |
20050242670 | Lee | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
875 227 | Apr 1953 | DE |
102 59 521 | Jun 2004 | DE |
05083901 | Apr 1993 | JP |
05219667 | Aug 1993 | JP |
06113491 | Apr 1994 | JP |
10-225038 | Aug 1998 | JP |
11-275781 | Oct 1999 | JP |
2000-184634 | Jun 2000 | JP |
2002-165410 | Jun 2002 | JP |
2003-199319 | Jul 2003 | JP |
2004-197157 | Jul 2004 | JP |
2004-289899 | Oct 2004 | JP |
2007135328 | May 2007 | JP |
2007259581 | Oct 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20070290567 A1 | Dec 2007 | US |