BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional view of an essential portion of an electric motor according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view showing an inner periphery side rotor, an outer periphery side rotor, and a rotating mechanism of the electric motor.
FIG. 3 is an elevation view showing the inner periphery side rotor, the outer periphery side rotor, without a drive plate in front, indicating a strong magnetic field state of the rotating mechanism of the electric motor. This figure shows a passage groove of the drive plate in front by two-dotted lines.
FIG. 4 is an elevation view showing the inner periphery side rotor, the outer periphery side rotor, without the drive plate in front showing a weak magnetic field state of the rotating mechanism of the electric motor. This figure shows the passage groove of the drive plate in front by two-dotted lines.
FIG. 5 is an elevation view showing the inner periphery side rotor, the outer periphery side rotor, without the drive plate in front showing the strong magnetic field state of the rotating mechanism of the electric motor. This figure shows the passage groove of the drive plate at the back by two-dotted lines.
FIG. 6 is a part perspective view that shows the inner periphery side rotor without the drive plate in front showing the weak magnetic field state of a vane rotor of the electric motor. This figure shows the passage groove of the drive plate in front by two-dotted lines.
FIG. 7A schematically shows the strong magnetic field state of permanent magnets of the inner periphery side rotor and permanent magnets of the outer periphery side rotor disposed in an unlike-pole facing arrangement. FIG. 7B schematically shows the weak magnetic field state of the poles of the permanent magnets of the inner periphery side rotor and the permanent magnets of the outer periphery side rotor disposed in a like-pole facing arrangement.
FIG. 8 is a graph showing the induced voltage in the strong magnetic field state and the weak magnetic field state shown in FIG. 7.
FIG. 9A is a graph showing a relationship between the electric current and torque of the electric motor that vary in response to the induced voltage constant Ke. FIG. 9B is a graph showing the relationship between the revolution speed and the field weakening loss of the electric motor that vary in response to the induced voltage constant Ke.
FIG. 10 shows the operable region for revolution speed and torque of the electric motor that varies in response to the induced voltage constant.
FIG. 11A is a graph showing the relationship between the electric current and the revolution speed of the electric motor that vary in response to the induced voltage constant Ke. FIG. 11B is a graph showing the relationship between the revolution speed and the output of the electric motor that vary in response to the induced voltage constant Ke.
FIG. 12A shows the distribution of operable regions and efficiency for the revolution speed and the torque of the electric motor that vary in response to the induced voltage constant Ke in one example. FIG. 12B shows the distribution of operable regions and efficiency for the revolution speed and the torque of the electric motor that vary in response to the induced voltage constant Ke in the second comparative example.
FIG. 13 is a cross-sectional view of an essential portion of an electric motor according to a second embodiment of the present invention.
FIG. 14 is an elevation view showing an inner periphery side rotor and an outer periphery side rotor, without a drive plate in front, indicating the weak magnetic field state of a rotating mechanism of the electric motor.
FIG. 15A and FIG. 15B show the around of bolt connected parts of the outer periphery side rotor and the drive plate of the electric motor. FIG. 15A shows a partially enlarged cross-sectional view before assembly of the electric motor, while FIG. 15B shows a partially enlarged cross-sectional view after assembly of the electric motor.
FIG. 16 is an elevation view showing the inner periphery side rotor and the outer periphery side rotor, without the drive plate in front, and indicating the strong magnetic field state of the rotating mechanism of the electric motor.
FIG. 17A schematically shows the strong magnetic field state of permanent magnets of the inner periphery side rotor and permanent magnets of the outer periphery side rotor disposed in an unlike-pole facing arrangement. FIG. 17B shows a schematic view of the weak magnetic field state in which the poles of permanent magnets of the inner periphery side rotor and the permanent magnets of the outer periphery side rotor are disposed in a like-pole facing arrangement.
FIG. 18 is a graph showing the induced voltage in the strong magnetic field state and the weak magnetic field state shown in FIG. 17A and FIG. 17B.
FIG. 19A is a graph showing the relationship between the electric current and the torque of the electric motor that vary in response to the induced voltage constant Ke. FIG. 19B is a graph showing the relationship between the revolution speed and the field weakening loss of the electric motor that vary in response to the induced voltage constant Ke.
FIG. 20 shows an operable region for the revolution speed and the torque of the electric motor that varies in response to the induced voltage constant.
FIG. 21A is a graph showing the relationship between the electric current and the revolution speed of the electric motor that vary in response to the induced voltage constant Ke. FIG. 21B is a graph showing the relationship between the revolution speed and the output of the electric motor that vary in response to the induced voltage constant Ke.
FIG. 22A shows the distribution of operable regions and efficiency for revolution speed and torque of the electric motor that vary in response to the induced voltage constant Ke in the embodiment. FIG. 22B shows the distribution of operable regions and efficiency for revolution speed and torque of the electric motor that vary in response to the induced voltage constant Ke in the second comparative example.
FIG. 23 is a cross-sectional view of an essential portion of an electric motor according to a third embodiment of the present invention.
FIG. 24 is an elevation view showing an inner periphery side rotor and an outer periphery side rotor, without a drive plate in front, and indicating the weak magnetic field state of the rotating mechanism of the electric motor.
FIG. 25 is an exploded perspective view showing the inner periphery side rotor, the outer periphery side rotor, and the rotating mechanism of the electric motor.
FIG. 26 is an elevation view showing the inner periphery side rotor and the outer periphery side rotor, without the drive plate in front indicating the strong magnetic field state of the rotating mechanism of the electric motor.
FIG. 27A shows a schematic view of the strong magnetic field state of permanent magnets of the inner periphery side rotor and permanent magnets of the outer periphery side rotor disposed in an unlike-pole facing arrangement. FIG. 27B shows a schematic view of the weak magnetic field state in which the poles of permanent magnets of the inner periphery side rotor and permanent magnets of the outer periphery side rotor are disposed in a like-pole facing arrangement.
FIG. 28 is a graph showing the induced voltage in the strong magnetic field state and the weak magnetic field state shown in FIG. 27A.
FIG. 29A is a graph showing the relationship between the electric current and torque of the electric motor that vary in response to the induced voltage constant Ke. FIG. 29B is a graph showing the relationship between the revolution speed and the field weakening loss of the electric motor that vary in response to the induced voltage constant Ke.
FIG. 30 shows the operable region for revolution speed and the torque of the electric motor that varies in response to the induced voltage constant.
FIG. 31A is a graph showing the relationship between the electric current and the revolution speed of the electric motor that vary in response to the induced voltage constant Ke. FIG. 31B is a graph showing the relationship between the revolution speed and the output of the electric motor that vary in response to the induced voltage constant Ke.
FIG. 32A shows the distribution of operable regions and the efficiency for revolution speed and torque of the electric motor that vary in response to the induced voltage constant Ke in the embodiment. FIG. 32B shows the distribution of operable regions and the efficiency for the revolution speed and the torque of the electric motor that vary in response to the induced voltage constant Ke in the second comparative example.