Embodiments described herein relate generally to an electric-power-generation level predicting apparatus which predicts an electric-power-generation level of an electric power generator utilizing natural energies, such as wind power generation and solar power generation, and also relates to a method and a program thereof.
Electric power generation utilizing natural energies, such as wind and solar light, has advantages such that no fuel cost is necessary, and no greenhouse gas is produced. Conversely, in general, natural energies depend on a weather, and have a disadvantage that the electric power generation utilizing such natural energies is uncertain and is difficult to predict. So far, an electric power generation level by natural energies is predicted mainly based on the result of a weather forecast.
Non-patent Document 1: Akinobu MURATA, Hiroshi YAMAGUCHI, Kenji OHTANI, “Prediction technique of fluctuation in output range in solar power generation with multiple power generators installed at broad regions”, Thesis B for the Institute of Electrical Engineering of Japan, volume 127, 5th issue, 2007, pp. 645 to 652
As a conventional technology of predicting an electric power generation level by natural energies, a technique is known which predicts an electric power generation level by natural energies based on weather information and which compensates the shortage by a dynamo electric generator. Such a prediction technique is, however, not in consideration of the fluctuation range.
Conversely, it is known that when there are multiple electric power generators utilizing natural energies, respective fluctuation ranges overlap, and thus the total fluctuation becomes small. Accordingly, in order to predict the total electric power generation level by the multiple electric power generators utilizing natural energies, it is necessary to sum up the predicted values in consideration of a correlation among those electric power generators.
In contrast, there is a technique of predicting the fluctuation of the total output in consideration of a correlation through, for example, an approximation formula. According to this technique, however, there is a disadvantage that an error is large. Moreover, according to the conventional technologies, it is difficult to predict the total output of a specific power plant in consideration of a correlation.
Conversely, when the power demand level and the power generation level are not balanced precisely, an electric power system becomes unstable such that a frequency fluctuates from a predetermined value. Hence, when electric power generation utilizing natural energies is adopted, it is necessary to pay an extraordinary attention to manage the electric power system.
However, the fluctuation in a frequency relates to the fluctuation in the electric power generation level. Moreover, as explained above, electric power generation by natural energies, such as wind power generation and solar power generation, has an electric power generator that uncertainly fluctuates the electric power generation level. Hence, according to the prediction techniques of the conventional technologies, it is difficult to stably manage the electric power system in consideration of such a fluctuation.
The electric power generation level by a wind power generator can be substantially predictable if the direction of wind and the speed thereof are determined. For example,
In view of those
Moreover, the electric power generation level of solar power generation can be substantially predictable if the location, the installing way of the electric power generator, and the amount of solar radiation are determined. For example,
As explained above, what is common to both wind power data and solar-radiation-amount data is that both data are not completely at random but are difficult to perfectly predict. Therefore, a prediction in consideration of a certain error is necessary. Moreover, in a prediction, it is necessary to perform prediction so as to satisfy a certain tendency based on past data. Such a tendency depends on a location and a season. Moreover, a relationship between a morning and an afternoon or time by time is important. The relationship time by time is referred to as a time correlation.
Both wind power generator and solar power generator have an electric power generation level depending on a weather condition. Accordingly, the electric power generation levels of the electric power generators at the same location are similar, but the electric power generation level of the electric power generator located at a distant location has a completely different pattern. If it is within several km or so, it can be considered that the weather condition is similar, and there should be a similarity in the pattern of the electric power generation level. This is referred to as a positional correlation. Even if those electric power generators are installed at adjancent locations, the wind speed and the amount of solar radiation are not completely consistent, and thus it is necessary to consider the positional correlation.
As explained above, in both cases of the wind power generator and the solar power generator, when predicting the electric power generation level of an electric power generator, it is necessary to consider a time correlation. Moreover, when simultaneously predicting the electric power generation levels of the multiple electric power generators, it is necessary to consider a positional correlation. However, according to the conventional prediction techniques, it is not easy to perform prediction in consideration of the time correlation and the positional correlation.
The embodiments described herein have been made in order to address the above-explained technical issues of the conventional technologies, and it is an object to provide electric-power-generation level predicting apparatus, method and program which can predict an electric power generation level in consideration of a statistical correlation even in a case of an electric power generator that has an electric power generation level uncertainly fluctuated.
To achieve the above object, according to one aspect, an electric-power-generation level predicting apparatus that obtains a predicted value relating to an electric power generation level of equal to or greater than one electric power generator having an electric power generation level uncertainly fluctuating includes the following past-data storing unit and predicted-value calculating unit. That is, the past-data storing unit stores, as past data relating to a past electric power generation level of at least one electric power generator, past data containing information at multiple time points in each day. The predicted-value calculating unit calculates, as time-series data containing an occurrence probability, a predicted value of the past data relating to an electric power generation level of the electric power generator based on a statistical correlation between different times in the past data or a statistical correlation between locations of the different electric power generators. According to the other aspects, respective functions of the above-explained units can be realized as a method executed by a computer or a program.
An explanation will be given to embodiments with reference to the accompanying drawings.
First, a configuration of an embodiment will be explained. That is, as shown in
The electric-power-generation level predicting apparatus 1 includes a prediction process unit 10, memory unit 20, an input unit 30, and an output unit 40, etc. The prediction process unit 10 includes a similar day selecting unit 11, a time-series data generator unit 12, a predicted-value calculating unit 13, and an electric-power-generation-level totaling unit 14, etc., activated by the execution of the above-explained program.
The similar day selecting unit 11 is a process unit that selects a similar day to a prediction target day based on weather forecast data, etc., of the prediction target day, and past data (weather data, such as wind-speed-wind-direction data and solar radiation level data; and electric-power-generation-level data of each electric power generator). The time-series data generator unit 12 is a process unit that extracts data in each selected similar day in a time-series manner.
The predicted-value calculating unit 13 is a process unit that calculates a predicted value of the electric power generation level of each electric power generator. The electric-power-generation-level totaling unit 14 is a process unit that calculates a predicted value of a total electric power generation level based on the predicted value of the electric power generation level of each electric power generator.
The predicted-value calculating unit 13 includes a variance-covariance-matrix generator unit 131, a random-cumber generator unit 132, and an electric-power-generation-level calculating unit 133. The variance-covariance-matrix generator unit 131 is a process unit that generates a variance-covariance matrix based on the extracted data in time series. The random-number generator unit 132 is a process unit that generates a random number in accordance with a probability distribution based on the generated variance-covariance matrix, thereby generating a predicted value (wind-speed-wind-direction data, electric-power-generation-level data, and solar radiation amount data, etc.). The electric-power-generation-level calculating unit 133 is a process unit that calculates a predicted value of the electric power generation level of each electric power generator based on the predicted value (the wind-speed-wind-direction data, and the solar-radiation-amount data, etc.).
The memory unit 20 is a configured unit that stores various pieces of information, such as necessary data for a process by the prediction process unit 10, and a calculated predicted value. Those pieces of information are input from the input unit 30 to be discussed later or input from the exterior through a communication network, and stored. The memory unit 20 is typically a built-in or externally connected various memories, hard disks, optical disks, etc., but all memory medium available presently or in future can be used.
The input unit 30 is a configured unit which inputs necessary information for the electric-power-generation level predicting apparatus 1, and for inputting selection and instruction of a process. Examples of such an input unit 30 are a keyboard, a mouse, and a touch panel (including one built in a display device), etc. However, all input devices available presently or in future are included. Hence, a sound inputting device through a sound input is also included. Moreover, it may be simply a switch, etc.
The output unit 40 outputs various data and a calculated predicted value, etc., in a form recognizable to users including a manager and an operator, etc. Examples of such an output unit 40 are a display device and a printer. However, all output devices available presently or in future are included. Hence, a sound outputting device through a sound output is also included.
According to this embodiment, weather data or electric-power-generation-level data is subjected to modeling through a multidimensional normal distribution, a multiple number of random numbers in accordance with the multidimensional normal distribution are generated through the variance-covariance matrix, and plural sets of time-series data to which an occurrence probability is added are generated, thereby calculating a predicted value.
Next, an explanation will be given of an action of this embodiment. First, with reference to
First, the similar day selecting unit 11 selects N number of days (where N is an arbitrary integer equal to or greater than two) having similar weather data to the prediction target day based on the weather forecast data of the prediction target day and past weather data (D1-1) at the location of each electric power generator (step 101). How to select a day having similar weather data to the target day in the past data is not limited to any particular scheme.
For example, a simple scheme is possible which selects a day having a portion of information in the weather data matching with the target, such as sunny in a morning and cloudy in an afternoon. Moreover, a scheme of, for example, selecting a day having similar numeric information in the weather data like a fine weather index or a cloud amount may be applicable.
The time-series data generator unit 12 generates, as time-series data (D1-2) of M number of electric power generators (where M is an arbitrary integer equal to or greater than 1) at K number of time points in the selected N number of similar days, a set (by what corresponds to the K number of time points, the N number of days, and M number of electric power generators) of two kinds of data: a wind speed; and a wind direction, from wind-speed-wind-direction data included in the weather data (D1-1) of the similar days (step 102). Note that K indicates a number of time points when the time axis of a day for 24 hours is divided into a predetermined interval, and when, for example, the interval is for each one hour, K=24, and when the interval is for each two hours, K=12.
The variance-covariance-matrix generator unit 131 generates a variance-covariance matrix of (2×K×m) rows and (2×K×m) columns from those pieces of time-series data (D1-2) (step 103). Next, the random-number generator unit 132 generates L sets (where L is an arbitrary integer equal to or greater than 2) of random numbers of (2×K×K) numbers using the variance-covariance matrix, thereby generating L sets of data (by what corresponds to the K number of time points, the M number of electric power generators, and L patterns) that are predicted values (D1-3) of two kinds: a wind direction; and a wind speed at the locations of respective wind power generators (step 104). The process of generating the variance-covariance matrix and the process of generating the random numbers will be discussed later in detail.
Thereafter, the electric-power-generation-level calculating unit 133 generates L sets (by what corresponds to the K number of time points, and M number of electric power generators) of predicted values (D1-4) of the electric power generation level of respective electric power generators at the K number of time points from the predicted values (D1-3) of a wind speed and a wind direction (step 105). The L sets of data have a time correlation and a positional correlation same as those of the original data of the N number of days, and correspond to a prediction result of the electric power generation level. Hence, the electric-power-generation-level totaling unit 14 totals the predicted values (D1-4) of the electric power generation levels of respective electric power generators, and thus an predicted value (D1-5) of the whole electric power generation level is obtained (step 106)
According to this embodiment, instead of the wind-direction-wind-speed data, the solar radiation amount data can be used to predict the electric power generation level of an electric power generator through solar power generation. The procedures are basically similar to those of the above-explained case. That is, selection of the similar days based on weather forecast data and past weather data, generation of time-series data of a solar radiation amount based on solar-radiation-amount data included in the weather data of the selected similar days, generation of variance-covariance matrix, and generation of random numbers are carried out.
In this case, when pieces of data by what corresponds to M number of electric power generators and K number of time points are used, a variance-covariance matrix of (K×M) rows and (K×m) columns is obtained, and eventually, L sets of random numbers of (K×M) numbers are obtained. Those are predicted values of a solar radiation amount, and the predicted value and the total value of the electric power generation level are obtained based on the predicted values.
According to the above-explained case, the process of converting the predicted values of the wind direction and the wind speed and the predicted value of the solar radiation amount into a predicted value of the electric power generation level (the calculation of the predicted value of the electric power generation level by the electric-power-generation-level calculating unit 133) is executed. However, such a conversion process is not always necessary. That is, according to this embodiment, it is possible to predict an electric power generation level based on past electric-power-generation-level data.
An explanation will be given of an example case in which electric-power-generation-level data is directly obtained with reference to the flowchart of
The time-series data generator unit 12 extracts, as the time-series data (D2-2) of the selected N number of similar days, sets (by what corresponds to the K number of time points, the N number of days, and the M number of electric power generators) of electric-power-generation-level data of each electric power generator from the electric-power-generation-level data (D2-1) of the selected N number of similar days (step 202). The variance-covariance-matrix generator unit 131 statistically analyzes those pieces of time-series data (D2-2), thereby generating a variance-covariance matrix (step 203).
Next, the random-number generator unit 132 generates, using the variance-covariance matrix, L sets of random numbers, thereby obtaining an predicted value (D2-3) of the electric power generation level of each electric power generator (step 204). Moreover, the electric-power-generation-level totaling unit 14 totals the predicted values (D2-3) of the electric power generation levels of respective electric power generators, thereby obtaining an predicted value (D2-4) of the whole electric power generation level (step 205).
As explained above, the predicted values (by what corresponds to the K number of time points, the M number of electric power generators, and the L patterns) of the electric power generation level and a total value thereof (by what corresponds to the K number of time points and the L patterns) can be obtained without through a conversion from the predicted values of the wind direction and the wind speed, and the predicted value of the solar radiation amount.
Next, schemes of generating the variance-covariance matrix and generating the random numbers will be explained through an example case in which the electric power generation level of a solar power generator is predicted. In this example, the K number of time points are 24 points for each one hour, and the explanation will be given of an example scheme of predicting the electric power generation level of an electric power generator (i.e., M=1) in consideration of a time correlation.
That is, the memory unit 20 stores in advance pieces of data {xi} that are the collection of electric-power-generation-level data for each time of day among plural days. The similar day selecting unit 11 selects similar days using, for example, a sorting algorithm. The time-series data generator unit 12 decomposes the electric power generation level of the selected similar day into an electric power generation level xi at a time i per an hour, and generates time-series data that is a vector having x1 to x24 arranged side by side.
The variance-covariance-matrix generator unit 131 generates, from this time-series data, a variance-covariance matrix having 24×24 components like the following [Formula 1] in order to consider the relationship in the electric power generation level between times. Note that var(xi) is a variance of {xi}, and cov(xi, xj) is a covariance of {xi} and {xj}. In order to calculate the variance and the covariance, at least equal to or greater than two days are necessary for obtaining electric-power-generation-level data. It is fine if the number of days for obtaining the electric-power-generation-level data is two, but the larger the number of days becomes, the higher the prediction precision becomes.
The random-number generator unit 132 generates multiple numbers of 24-dimensional random numbers based on the variance-covariance matrix, and generates a predicted value 24 of the electric power generation level.
In this case, it is necessary to define a probability distribution followed by the electric power generation level at each time. An explanation will be given of an example case in which a 24-dimensional normal distribution is applied. That is, when a 24-dimensional vector x=(×1, x2, x3, . . . and x24) follows a 24-dimensional normal distribution, a probability density function satisfied by x can be expressed as the following [Formula 2] using an average-value vector μ=(μ1, μ2, μ3, . . . and μ24) of x.
The electric-power-generation-level data by a day can be deemed as a 24-dimensional vector x. In this embodiment, it is referred to as an electric-power-generation-level scenario. By generating multiple sets of 24 random numbers following the probability distribution of [Formula 2], an arbitrary number of electric-power-generation-level scenarios can be generated. The electric-power-generation-level scenario represents the statistical characteristic of past electric-power-generation-level data.
That is, the fluctuation range for each time can be represented by a variance for each time, and a correlation between times can be represented by a covariance. Moreover, even if the amount of past electric-power-generation-level data is merely for two days, for example, a million of electric-power-generation-level scenarios can be generated.
Next, an explanation will be given of a scheme of generated L sets of random numbers following the particular probability distribution and having a correlation given to each other. An explanation will be given of an example case in which L sets of 24 random numbers having a correlation with each other are generated.
First, a distribution of past data is obtained for each time of day, and L number of random numbers following such a distribution are generated. An example of the simplest way of generating random numbers following a particular distribution is a rejection technique. This is a technique of generating uniform random numbers within a region defined by the domain of a distribution function and a range thereof, and rejecting ones that exceed the value of the distribution function among such random numbers.
This technique can be applied to all distribution functions, but the efficiency is not always good. Moreover, when the domain is not a finite range, it is not easy to apply such a technique. If there is reverse function of a particular distribution, it is easy to generate random numbers following the particular distribution based on uniform random numbers. This will be repeated for each time of day in 24 hours.
L number of random numbers are generated by what corresponds to 24 hours through the above-explained processes. In this stage, the set of random numbers for each time has no correlation with a set of random numbers at another time, and is independent from each other. However, the random numbers generated through a general algorithm are pseudo random numbers, and even if it is attempted to generate independent random numbers, in general, there is a possibility that such random numbers have a correlation. Hence, those are converted into a set of random numbers independent from each other through a principal component analysis as needed.
As a result, a random-number matrix having components of L rows by 24 columns (L×24) is obtained. In this stage, each random number is normalized through a variable conversion so as to have a standard deviation of 1 and an average of 0. A normalized random-number matrix G is obtained in this fashion.
Next, a correlation-coefficient matrix R of 24×24 is subjected to Cholesky decomposition, and is decomposed to an upper triangular matrix TU and a lower triangular matrix TL. The correlation-coefficient matrix can be obtained by normalizing a variance-covariance matrix Σ.
R=T
U
T
L [Formula 3]
Thereafter, the normalized random-number matrix C is subjected to a multiplication with the upper triangular matrix TU from the right, thereby generating a normalized random-number matrix having a correlation.
G′=GT
U [Formula 4]
A standard deviation of each time is placed on a diagonal line of the obtained solution, and this is subjected to a multiplication with standard-deviation matrix S of 24 rows by 24 columns (24×24) having other components that are 0 from the right, and an average-value matrix A of L rows by 24 columns (L×24) having the average—value vectors p arranged by L rows is added. Eventually, a random-number matrix G″ having an average, a variance, and a correlation to be obtained is obtained.
G″=G′S+A [Formula 5]
The matrix G″ is a prediction result itself, and N number of vectors at each row (1 row by 24 columns) of G″ correspond to each prediction result.
When, for example, the number of time division is large or when a correlation between electric power generation levels is intensive, an error by cancellation of significant digits increases as a problem over a calculation of a numeric value, and the Cholesky decomposition of the correlation-coefficient matrix R becomes difficult in some cases. In this case, eigenvalue decomposition or singular value decomposition is applied as needed. Note that in the above-explained generation scheme, instead of dividing a day into 24 hours, a division by arbitrary hours can be applied. That is, the unit of division is optional.
Next, an explanation will be given of a result of an cation of the prediction process of this embodiment to a specific case.
When there are a plurality of solar power generators, if those generators fluctuate at random with each other, an effect of smoothing can be perceived. When there is a correlation between the electric power generation levels with each other, the effect of smoothing becomes small. In this embodiment, is possible to simulate such a situation.
The wind direction and the wind speed have a correlation with each other, and thus it is necessary to predict both simultaneously. Hence, as shown in
From those five time series, the variance of data at respective time points and the covariance between different time points are calculated, thereby generating the variance-covariance matrix of 48×48. Next, using this variance-covariance matrix, random numbers following a 48-dimensional normal distribution are generated, and thus an arbitrary number of time series having a length corresponding to 48 time points can be generated.
Next, an explanation will be given of an example case in which the prediction process is performed when there are a plurality of electric power generators through natural energies which are, for example, solar power generators. When respective electric power generation levels of the plurality of solar power generators have no correlation with each other, it is possible to predict individual electric power generation level. However, it is normal that respective electric power generation levels of the plurality of solar power generators have a correlation with each other through weather data. It is also known that if the electric power generation levels of the plurality of solar power generators are totaled, the fluctuation becomes small. In this case, when a correlation is small, the possibility of smoothing the fluctuation is high but when a positive correlation is intensive, no fluctuation is subjected to smoothing.
When, for example, prediction is performed for M number of solar power generators, if the number of time points is 24, a variance-covariance matrix having components of (Mx24) rows by (M×24) columns is generated, and (M×24)-dimensional random-number vectors are multiply generated, thereby enabling a prediction of the electric power generation level of each solar power generator.
In
The electric power generation level in
In the load frequency control, when, for example, the electric power generation level of a load and that of the other electric power generator are constant, the fluctuation range of the frequency is proportional to the fluctuation range of the electric power generation level through natural energies. A proportional constant at this time is a load frequency constant. Hence, when the fluctuation range shown in
According to the above-explained embodiment, with respect to past data on electric power generation levels, a predicted value is calculated in consideration of a statistical correlation between different times, and thus the electric power generation level of a particular electric power generator can be predicted precisely. Moreover, the predicted value is calculated in consideration of a statistical correlation between locations of different electric power generators, and thus respective electric power generation levels of multiple number of electric power generators can be predicted precisely. That is, the electric power generation level of each electric power generator can be predicted as a set of plural pieces of time-series data to which the occurrence probability is given in consideration of a statistical correlation of the electric power generation level between different times having different weather data and electric-power-generation-level data or a statistical correlation of the electric power generation level at the same time between the electric power generators at different locations. Hence, even in the case of an electric power generation plant and electric power system including electric power generators that have respective electric power generation levels uncertainly fluctuating, the electric power generation level can be predicted precisely through a statistical probabilistic scheme.
Moreover, when the electric power generation levels of multiple number of electric power generators are predicted, a prediction in consideration of a time correlation and a positional correlation is enabled. Furthermore, when there are plural electric power generators and electric power generation plants, respective electric power generation levels are totaled (which is also possible for each specific group), and the total electric power generation level can be predicted. Still further, a fluctuation level of the electric power generation level of the system can be evaluated based on the prediction result of the total electric power generation level of the multiple number of electric power generators, and a frequency fluctuation of the system can be also evaluated.
When the electric power generation level through wind power generation is predicted, the electric power generation level can be evaluated by predicting a wind direction and a wind speed, or the electric power generation level is predictable directly. When the electric power generation level through solar power generation is predicted, it can be applied to a prediction of the amount of solar radiation, but the electric power generation level is predictable directly. Hence, through the prediction of the electric power generation level, predicted values of a wind direction and a wind speed or a predicted value of an amount of solar radiation can be obtained.
Note that successive events that occur simultaneously in the world are considerable as a scenario. A solar power generation scenario, a wind power generation scenario, and a load scenario belonging to the same scenario have a higher possibility that those events occur simultaneously, and the necessary electric power generation level to be output by a normal electric power generation plant can be also evaluated from those events. Together with such an evaluation, necessary costs and the amount of fuel can be evaluated including a fluctuation. Accordingly, an expected value of costs can be also evaluated from those scenarios.
The invention is not limited to the above-explained embodiments. For example, the specific contents and values of various pieces of information used in the invention are optional, and are not limited to any specific contents and values. “An predicted value relating to an electric power generation level” and “past data relating to an electric power generation level” in this specification are broad concepts containing various kinds of information relating to an electric power generation level, such as weather data, electric-power-generation-level data, and error data (to be discussed later).
Moreover, according to the above-explained example, random numbers following a multi-dimensional normal distribution are used, but the probability distribution is not limited to the normal distribution. For example, a logarithmic normal distribution, an index distribution, a Weibull distribution, a beta distribution, and other arbitrary distributions are applicable. A distribution form can be generated from the actual electric power generation level through a function approximation. Like the solar power generation level, when the upper limit (depending on toe amount of solar radiation at the time of fine weather) and the lower limit (=0) are theoretically set, if, for example, the beta distribution is applied, the fitting can have an improved precision.
That is, weather data or electric power generation level data are subjected to modeling using the above-explained distribution, and multiple number of random numbers following such a distribution are generated using a variance-covariance matrix to generate a set of plural nieces of time-series data to which an occurrence probability is given, thereby calculating a predicted value. This is also within the scope and spirit of the invention.
When the scheme of the above-explained embodiment and that of the modified example thereof are combined with the conventional prediction models, the precision can be improved.
In order to do so, various kinds of and a large number of models, such as a regression model and a neural network, are used. In this case, in general, relationship between past weather information and an electric power generation level is subjected to modeling. A past actual value (e.g., actual weather data and electric-power-generation-level data) are used in some cases, but normally, a predicted value in past (predicted values of weather data and electric-power-generation-level data, etc.) s not used. Moreover, in order to evaluate an error and a fluctuation of a predicted value in future, an error bar and a standard deviation are applied.
Conversely,
Error data in past can be obtained from a difference between the actual value in past and the predicted value in past. Such error data can be calculated by, for example, an error-data computing unit provided in the prediction process unit 10. Alternatively, error data input from the input unit 30 or through a communication network from the exterior and stored in the memory unit 20 can be used.
The error data is generated as a set of error data in time series by the time-series data generator unit 12. For example, calculation is carried out for each certain period, such as a day, a week, or a month in past, and the sets of error data in time series can be obtained by what corresponds to the number of days, weeks, or months where pieces of data are present. It is presumed that the number of sets of the error data in time series is K (where K≧2).
Conversely, an predicted value in future is predicted through the above-explained any given prediction model A, but according to the scheme shown in
Hence, when a correcting unit provided in the prediction process unit 10 performs correction of adding such time series to the prediction result obtained through the particular prediction model A, a prediction result having a high realization probability can be obtained. When, for example, there is a strong tendency that the particular prediction model A outputs a smaller prediction result than an actual value, there is a tendency that a negative time-series data of the error is obtained. The time-series data of the prediction result reflects such a feature.
According to the above-explained example, it becomes possible to predict, including the error, the future electric power generation level of an electric power generator having the uncertain electric power generation level like the electric power generator through natural energies based on past weather data or electric-power-generation-level data. Once an electric-power-generation-level scenario is generated, it becomes easy to create a power generation plan through the technology similar to the conventional technologies, and calculation of expected values of the electric power generation level, costs for power generation, and profits, or selection of the optimized power generation plan are enabled using the created power generation plan scenario.
In this case, the above-explained particular prediction model can be any given one is desirable that the prediction model should have a high precision, but even f a model with a poor precision is used, as explained above, by using a predicted value of the error data, the precision can be improved. In general, a prediction model has a precision deteriorated as time advances, but there is an advantage that when a predicted value of the error data is used, the same prediction model can be used for a long time.
The time-series data is not limited to the cases of solar power generation and wind power generation it is possible to predict not only geothermal power generation, wave activated power generation, tidal power generation and other electric power generation through natural energies but also demand data of a particular area. Needless to say, the prediction target can be the error thereof in time series. Moreover, when a prediction based on weather data is difficult like the tidal power generation, it is possible to predict the fluctuation level of an electric power generation level based on only actual data of the electric power generation level in past.
Several embodiments have been explained above, but those embodiments are given as illustrative purposes, and are not to limit the scope and spirit of the invention. Those novel embodiments can be carried out in various other forms, and permit various omission, replacement, and change without departing from the scope and spirit of the invention. Those embodiments and modified examples are within the scope and spirit of the invention and the overview thereof, and are also included within scope and spirit of the invention set forth in the appended claims and the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2010-065083 | Mar 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/001648 | 3/18/2011 | WO | 00 | 9/10/2012 |