1. Field of the Invention
The present invention relates to an automotive electric power steering device in which an electric motor is used to supplement steering torque generated by the driver's steering force.
2. Description of the Related Art
In the field of electric power steering devices, various approaches have been suggested to restrict the upper limit for indicator current to an auxiliary electric motor under a predetermined condition, so that the auxiliary electric motor is not overheated by overload.
The motor current control unit 3 includes a motor current detecting circuit 4 that detects the motor current, a comparator 5 that compares a current command from the target current operation unit 2 and an output from the motor current detecting circuit 4, and motor driving signal operation means 6 for calculating a motor driving signal in response to the output received from the comparator 5 so that the current deviation is nullified and thus controlling the motor current.
The motor target current operation unit 2 includes a first target current operation unit 7 that calculates a first target current determined based on detection torque from steering torque detecting means 10 and outputs from handle angle information detecting means 11 and vehicle speed detecting means 12, motor current limiting value operation means 8 for preventing the motor and the controller from being overheated because of motor overload based on inputs from the vehicle speed detecting means 12, ambient temperature detecting means 13, and the motor current detecting means 4 in the motor current control unit 3, and the motor current limiting means 9 in the motor current control unit 3, and motor current limiting means 9 for keeping the output of the first target current operation unit 7 below the output of the motor current limiting value operation means 8.
In this example, the motor current limiting value operation means 8 uses an ambient temperature value obtained by the ambient temperature detecting means 13 as an initial value and thereafter limits the motor current based on an ambient temperature estimation value obtained by shifting the ambient temperature value to the lower temperature side as the vehicle travels for a prescribed period or more and the quantity of heat generated from the motor and the controller estimated by adding up outputs from the motor current detecting circuit 4.
As described above, in the disclosure of JP-A-2002-370660, the device includes the motor current limiting value operation means 8, and the current limit for the motor indicator current value is determined based on a heat quantity estimation value obtained by adding up motor currents from the motor current detecting means 4 and an ambient temperature obtained from the ambient temperature detecting means 13. If the ambient temperature obtained from the ambient temperature detecting means 13 is high and the motor and the controller are located in the vehicle interior, the current limiting is eased in expectation of a decrease in the vehicle interior temperature after travelling for a prescribed period or more.
However, if a vehicle does not have such means for detecting the ambient temperature, the case of the maximum temperature in use must be assumed, and the current can be limited excessively, which lowers the supplementing effect by the motor. Even with the means for detecting the ambient temperature, it would be difficult to obtain accurate ambient temperature because of the effect of heat generated from the motor after current is passed to the motor. If the motor and the controller are located outside the compartment, an air stream created by the running vehicle or heat from the engine can greatly affect the ambient temperature.
The invention is directed to an improvement to the above described disadvantages and it is an object of the invention to provide an electric power steering device that can apply current limiting based on estimated ambient temperature without using ambient temperature detecting means.
An electric power steering device according to the invention includes a motor that supplements the steering force of a driver, a controller that determines and controls the amount of current passed to the motor, and vehicle speed detecting means. The device includes ambient temperature estimating means provided with a vehicle speed signal input from the vehicle speed detecting means, and the amount of current passed to the motor is limited based on an output from the ambient temperature estimating means.
As described above, according to the invention, the ambient temperature is estimated using the vehicle speed signal, so that the electric power steering device that does not excessively limit the motor current can be obtained.
The electric power steering device according to the first embodiment includes a motor 1 that supplements the driver's steering force, a target current operation unit 2 that calculates current to be passed to the motor 1 for supplementing the driver's steering force, and a motor current control unit 3 that calculates a motor driving signal for a target current from the target current operation unit 2 and controls the motor current. The target current operation unit 2 and the motor current control unit 3 are each made of a controller including a CPU, a RAM, a ROM, and the like.
As with the unit shown in
The motor target current operation unit 2 includes a first target current operation unit 7 that calculates a first target current determined based on detection torque from the steering torque detecting means 10 and outputs from handle angle information detecting means 11 and vehicle speed detecting means 12, motor current limiting value operation means 8 for preventing the motor and the controller from being overheated by motor overload based on inputs from the vehicle speed detecting means 12, engine revolution detecting means 14, and the motor current detecting means 4, and motor current limiting means 9 for keeping the output of the first target current operation unit 7 below the output of the motor current limiting value operation means 8.
The difference from
In the circuit configuration in
The limiting value operation unit 16 determines a motor current limiting value based on the quantity of heat generated from the motor and the controller estimated by adding up outputs from the motor current detecting means 4 and the ambient temperature estimation value by the ambient temperature estimating means 15. As with the case shown in
Note that the motor and the controller are heated by engine heat when the vehicle is at rest but cooled by an unassisted air stream created while the vehicle runs. Therefore, the ambient temperature data of the vehicle speed-ambient temperature relation data referring unit 17 is set so that the temperature is at its maxim when the vehicle is at rest and decreases as the vehicle speed increases. The initial value when the low-pass filtering unit 18 is activated is set to the maximum value for the use temperature condition while the engine is cold.
The ambient temperature estimating means 15 and the limiting value operation unit 16 are provided with signal inputs from the engine revolution detecting means 14. Therefore, if the engine revolution is off, the ambient temperature estimation or current limiting processing can be continued without cutting off the CPU power supply of the controller until after a prescribed period necessary for the engine to cool. Therefore, when the ignition switch is turned on again as the engine is warmed up, the low-pass filtering or motor current limiting is not initialized, so that the motor current limiting suitable for the ambient temperature is continued.
Now, the operation during the period will be described in detail.
In
When the CPU is activated, the vehicle speed after low-pass filtering is set to the initial value A (see {circle around (2)}) while the motor current limiting value is set to the initial value B (see {circle around (3)}).
Assuming that the vehicle has traveled at constant speed, the vehicle speed after low-pass filtering converges to the actual vehicle speed with a prescribed time constant (see {circle around (4)}). Then, when the motor current is passed, the motor current is limited in response to the quantity of heat generated accordingly (see {circle around (5)}).
The ambient temperature of the motor and the controller is raised by heat from the engine, the radiator, and the like. Meanwhile, the temperature is slightly lowered by an air stream created by the running vehicle (see {circle around (6)}).
Assuming that the vehicle stops now, the vehicle speed after low-pass filtering converges toward 0 Km/h with a prescribed time constant (see {circle around (7)}). When the vehicle speed after low-pass filtering decreases to the prescribed threshold L or less, the CPU determines that the vehicle is at rest and further lowers the motor current limiting value so that overheating is prevented (see {circle around (8)}). When however the vehicle is at rest, there is no longer the cooling effect by the air stream created by the running vehicle, and therefore the ambient temperature of the motor and the controller further rises (see {circle around (9)}).
Then, assume that the ignition switch is turned off and the engine stops (see {circle around (10)}). The vehicle speed after low-pass filtering is still at 0 Km/h (see {circle around (11)}), the actual motor current is zero, and therefore the current limiting value is gradually raised and returned to the initial value (see {circle around (12)}).
When the temperatures of the engine, the radiator, and the like are lowered after the engine is stopped, the ambient temperature of the motor and the controller is eventually lowered to the level of the outside air temperature (see {circle around (13)}).
After a prescribed time period T elapses from the engine stop, the CPU is turned off (see {circle around (14)}). The prescribed time period T is set to be longer than the time necessary for the ambient temperature denoted by the circled 13 to be lowered to the outside air temperature. Then, when the ignition switch is turned on again, the process returns to the start (see {circle around (1)}) and the same operation is repeated.
Now, the case in
The operation of the ignition switch from turning on to turning off is the same as that described in conjunction with
The vehicle speed after low-pass filtering is still at 0 Km/h (see {circle around (4)}) and therefore the CPU carries out motor current limiting for a vehicle at rest, and the current limiting based on the ambient temperature continues (see {circle around (5)}). Then, the vehicle starts to travel, the ambient temperature of the motor and the controller is lowered by the effect of an air stream created by the running vehicle, and the motor current limiting value is raised accordingly (see {circle around (6)}).
As described above, “the function of continuing the ambient temperature estimation and the current limiting without turning off the CPU until after a prescribed time period” permits the current to be limited in a manner adapted to the ambient temperature after the ignition switch is turned on again.
For the purpose of facilitating the understanding of the present invention, the case in which there is no such “function to keep the CPU on until after a prescribed time period” and the CPU is turned off together when the ignition switch is turned off will be described with reference to
Assuming that the ignition switch is turned off, then the ignition switch is turned on again before a prescribed time period elapses, and the engine starts (see {circle around (2)}), the CPU is re-activated, and the vehicle speed after low-pass filtering and the current limiting value are reset to the initial values (see {circle around (3)}). At the time, the engine and the radiator are not yet cooled, and the ambient temperature of the motor and the controller is still higher than the outside air temperature (see {circle around (4)}). After the vehicle speed after low-pass filtering is lowered and before the motor current limiting is applied, motor current in the same amount as that when the ambient temperature is equal to the outside air temperature is allowed to be passed though the ambient temperature is still high. This causes an overheated state (see {circle around (5)}).
As in the foregoing, the first embodiment of the invention includes the vehicle speed detecting means and the ambient temperature estimating means including the vehicle speed-ambient temperature relation data referring unit and the low-pass filtering unit, and therefore the ambient temperature can be estimated without using the ambient temperature detecting means. Therefore, the operation of limiting the motor indicator current can be more accurate and an electric power steering device with an improved steering feeling can be provided.
Since signals are input from the engine revolution detecting means, the ambient temperature estimation and the current limiting processing can be continued before the prescribed time period elapses after the engine revolution is off, without turning off the CPU. Therefore, when the ignition switch is turned on again with the engine in a warmed-up state, the low-pass filtering and the motor current limiting are not initiated, so that motor current limiting suitable for the ambient temperature is continued.
In the electric power steering device in
The limiting value operation unit 16 transmits current pattern signals to the motor current limiting means 9 based on ambient temperature estimation values obtained according to the quantity of heat generated from the motor and the controller estimated by adding up outputs from the motor current detecting circuit 4 and the result of determination by the stop/travelling determining unit 20. The signals are based on assumptions that the temperature is for example in the range from 40° C. to 50° C. if the vehicle is travelling and not less than 80° C. if the vehicle is at rest. The unit thus determines a motor current limiting value. Note that the threshold to be compared to the vehicle speed signal after filtering may be provided with a hysteresis.
According the second embodiment, it is only necessary that the limiting value operation unit 16 selects and outputs two current pattern signals for the vehicle during travelling and at rest based on the determination of stop/travelling, so that it is not necessary to produce data on the relation between the vehicle speed and the ambient temperature in advance unlike the first embodiment, which allows a simple control system to be formed. The thresholds to be compared to the vehicle speed signal after filtering may be provided with a hysteresis, so that settings more suitably adapted to the temperature change in an actual vehicle can be made and more flexibility in design may be provided.
Number | Date | Country | Kind |
---|---|---|---|
2006-115635 | Apr 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5596252 | Shimizu et al. | Jan 1997 | A |
7164248 | Hayashi | Jan 2007 | B2 |
20020179363 | Takatsuka et al. | Dec 2002 | A1 |
20030144780 | Recker et al. | Jul 2003 | A1 |
20040222037 | Takatsuka et al. | Nov 2004 | A1 |
20050269150 | Fujimoto et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
03-132472 | Jun 1991 | JP |
592054 | Dec 1993 | JP |
2002-034283 | Jan 2002 | JP |
2002-370660 | Dec 2002 | JP |
2004-336975 | Nov 2004 | JP |
2005007951 | Jan 2005 | JP |
2005343293 | Dec 2005 | JP |
2006082797 | Mar 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20070247766 A1 | Oct 2007 | US |