This disclosure relates to electric power control and monitoring stations. More particularly, this disclosure relates to outdoor electric power control and monitoring stations and systems for enclosing such.
Effective electric power transmission and distribution requires equipment and devices for the control, monitoring, automation and protection of the electric power transmission or distribution systems. Examples of equipment that may be used on electric power transmission and/or distribution systems include switches, circuit breakers, capacitor banks, transformers, conductors, fuses, generators, current transformers (CTs), potential transformers (PTs), and the like. Devices may be in communication with such equipment for the monitoring, control, automation, and/or protection of the electric power system. Examples of these devices include the following: intelligent electronic devices (IEDs) such as protective relays, bay controllers, differential relays, distance relays, synchrophasor measurement units, synchrophasor measurement and control units, communications processors, synchrophasor vector processors, meters, programmable logic controllers, switches, generator relays, transformer relays, faulted circuit indicators, clocks, and the like. Devices may receive information from the equipment and act accordingly, based on the information received. Devices may also send control commands to the equipment. For example, a protective relay may be capable of receiving electric power system information (i.e. switch or breaker status from a switch or breaker, current from a CT, and/or voltage from a PT), process the gathered power system information, make a decision based on the information, and send a control command to the breaker to change status.
Power system substations are sites where several components of the electric power system converge in a single location, such as a yard. For example, a substation may be formed at the interface between an electric power transmission system and an electric power distribution system. The substation may include several step-down transformers where the relatively high-voltage from the transmission system is stepped down to the lower voltage of the distribution system. Substations may further be formed along various points of electric power transmission or distribution systems, such as where several lines of a particular system meet.
Substations often also include several devices for control, monitoring, automation and protection of an electric power transmission or distribution system. Such devices are typically mounted in panels and housed in a free-standing structure such as a building or modular enclosure. Substation buildings may include some means of physical security such as locked doors, intruder alarm systems, and the like such that the devices are not easily accessed by unauthorized persons.
Substation buildings are permanent, often bulky, require a significant amount of time to build, and use large amounts of energy to maintain adequate internal environmental conditions for personnel that may be working therein. Further, substation buildings are often placed in locations away from populated areas and may be difficult to access. Often, the need to access the devices occurs only periodically. As a result, some substation buildings are built and maintained only for a small amount of time that a person requires the benefits of the structure.
Alternatively, substation devices for control, monitoring, automation and protection of the electric power transmission or distribution system have been housed in enclosures, or otherwise known as modular power system control systems.
The present invention is directed to a power system device enclosure, also known as a modular power system control system, including a selective workspace enclosure. Specifically, the present invention includes a workspace enclosure for enclosing a workspace adjacent to a power system device enclosure thereby providing a shelter or barrier to the elements for personnel accessing the power system device enclosure. Generally, the power system device enclosure may be partitioned to include a number of cabinets, in each of which a number of devices may be installed. The workspace enclosure may further include an optional platform, guide members, protective barriers and cover members (when retracted housed in a cover cabinet) to provide a shelter or barrier to the elements for personnel accessing the power system device enclosure from a select workspace. The power system device enclosure may be “modular” in that multiple modules, each including its own protective cover member, may be installed adjacent to one another, such that enclosed workspaces may be selectively extended to provide enclosed workspaces only as needed.
Non-limiting and non-exhaustive embodiments of the disclosure are described, including various embodiments of the disclosure with reference to the Figures, in which:
As illustrated in
The embodiments of the disclosure will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the systems and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments of the disclosure.
In some cases, well-known features, structures or operations are not shown or described in detail. Furthermore, the described features, structures, or operations may be combined in any suitable manner in one or more embodiments. It will also be readily understood to those skilled in the art that the components of the embodiments as generally described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations.
Referring to
The exterior of the present invention power system device enclosure 200 and cabinet doors 220 may be generally constructed of environmentally-hardened panels. The environmentally-hardened panels provide protection from the possibly harsh environments where substations may be located (e.g., from sun, heat, snow, rain, etc.). Both the power system device enclosure 200 and power system devices 204 housed therein may include further environmental protections such as conformal coating components thereof to protect against harsh environments and airborne contaminants, such as hydrogen sulfide, chlorine, salt, and moisture.
Typical power system devices 204 are designed to operate within a wide environmental operating range. For example, power system devices available from Schweitzer Engineering Laboratories, Inc. of Pullman, Wash. are typically rated to function at temperatures from ranging from about −40° C. to about +85° C. (−40° F. to +185° F.). Such temperatures are rarely experienced outside of structures. However, confinement of the power system devices 204 within an enclosure may cause the temperatures to exceed this temperature range. For example, the heat emitted by power system devices may cause the temperature within an enclosure to rise above the outdoor temperature.
In accordance with an embodiment of the present invention as shown in
As shown specifically in
Moreover, the ventilation system 321 for the workspace 318 may or may not be separately controllable from the ventilation system 321 for regulating and controlling the temperature within the cabinets 302 of the power system device enclosure 300. In another example, the ventilation system 321 for the workspace 318 may also be coupled to a cabinet 302 light switch. In this arrangement, upon opening the cabinet door 320, a switch may be engaged to automatically turn on the ventilation system 321 and a light within the cabinet 302. Upon closing the cabinet door 320, the switch may be disengaged thereby automatically turning off the ventilation system 321 and light within the cabinet 302. In another embodiment, the switch for the ventilation system 321 may be separate and apart from the switch of the lighting within the cabinet 302.
Referring back to
In many cases, an enclosed workspace is only necessary for a portion of the control system. The power system device enclosure 200 includes a number of cabinets 202, in each of which a number of power system devices 204 may be installed. Often, only a single power system device 204 or a small group of power system devices 204 need to be accessed. Devices may need to be accessed to, for example, retrieve data, install data (firmware upgrades, etc. . . . ), change settings, review settings, and the like. Accordingly, in conditions that may require an enclosed workspace 218 for accessing only a select number of power system devices 204, it may be advantageous to selectively extend an enclosure 208 around only the cabinets 202 housing the power system devices 204 that need to be accessed. For example, in
Further, in many cases, the workspace enclosure 208 only needs to be extended during relatively short periods of time when the power system devices 204 need to be accessed by personnel. Again, it may be advantageous to selectively extend a workspace enclosure 208 for only the times at which the power system devices 204 housed in a particular cabinet 202 need to be accessed. Thus, the present invention provides a system for selectively enclosing a workspace 218. The workspace enclosure 208 may be selectively extended as needed and where needed.
Apparent are several advantages to such a workspace enclosure 208. One advantage is that where only a relatively small number of power system devices 204 are needed, a small workspace enclosure 208 may be provided with the cabinets 202 needed to house the power system devices 204, and enclosure sufficient for selectively enclosing the power system devices 204. Where additional power system devices 204 are later needed, a second power system device enclosure 200 and workspace enclosure 208 may be provided. A second such installation may be installed adjacent to the first installation, each selectively and separately enclosable.
As illustrated in
As illustrated in
As shown in
As shown in
Additionally, situated near the lower hinge 526 may be a handle (not shown) for assisting the user in extending and foldably storing the guide member 512 in the cabinet 502. Near the lower end of the guide member 512 is a link or other securing means (not shown) for securing the lower end to the upper end of the guide member 512. This link, or other securing means, prevents movement of the lower end of the guide member 512 relative to the upper end of the guide member 512 during storage thereof.
As shown in
As depicted in
Moreover, each guide member 612 may include another track 652 extending from the single track 632 and spanning the entire length of the guide member 612 on its interior side. When the protective barriers are extended, this track 652 permits the entire length of the guide member 612 and the front side of the protective barrier 614a to be flush. As shown in
As shown in
The guide members 612 may be of a size sufficient to allow a person to stand and work within the enclosed workspace, yet small enough to be completely retracted to within the cabinet 602. The guide members may be from about 1 foot to about 10 feet deep and from about 5 feet to about 10 feet tall. The guide members may be around 3 feet deep to about 7 feet tall.
As shown in
As shown in
As shown in
In another embodiment (not shown), as an alternative to the motor, the cover member may be extended and/or retracted using a manual means such as a chain or a rope in rotating communication with the spindle on which the cover member may be rolled. In this arrangement, the pulley is engaged manually such that by pulling on one side of the chain or rope the pulley operates in one direction, gripping the groves defined in the section of cover treading, and pulling the cover member such that it is unrolled and extended. By pulling on the other side of the chain or rope the cover member is rolled and retracted. Further, the cover member may be extended by pulling on the leading edge of the cover member along the guide members and to the platform. The cover member may then be retracted using the chain or rope to activate the pulley. In one embodiment, the cover member is provided with a motor for extension/retraction, and a manual means for extension/retraction in case the motor malfunctions or power to the motor is unavailable.
In yet another embodiment, the cover member is formed from a material that is substantially stiff in compression such that when the motor is operated to extend the cover, the leading edge of the cover is pushed along the horizontal portion of the guide members. In this embodiment, the cover member is sufficiently flexible in at least one direction such that it may flex as it passes from the horizontal portion of the guide members to the vertical portion of the guide members. Also, the cover member may be sufficiently flexible in at least one direction such that it may be rolled on the spindle when in the retracted position.
The purpose of the cover member may be to increase the protection of the personnel accessing the devices and to increase the protection of the devices from possible environmental conditions upon opening of the cabinets housing the devices. Some examples of such environmental conditions includes rain, sleet, snow, blowing dust or debris, airborne corrosive chemicals, and the like. To achieve this objective, the cover member may be formed of a material that is substantially impervious to these conditions. The cover member may further be required to withstand some degree of physical deformation from, for example, wind, the weight of collected snow (on the horizontal portion, for example), the weight of collected water (on the horizontal portion, for example), and the like. To that end, the material chosen for the composition of the cover member may be required to withstand a degree of physical deformation. To accomplish this, the cover member may be formed from materials such as metal, plastic, composite materials, or the like.
In one embodiment, the cover member is comprised of a rolling door. Rolling doors are available from numerous manufacturers and may be formed from one of various materials. For example, rolling doors may be purchased from Wayne Dalton Corporation of Mt. Hope, Ohio. Rolling doors are especially well-suited for this application because they are flexible in one-direction only, and are substantially flexible in that direction to allow for rolling on a spindle as well as the transition from the horizontal portion to the vertical portion. Further, rolling doors are sufficiently resistant to physical deformation as well as many environmental conditions such as rain, snow, blowing debris, airborne corrosives, and the like. Rolling doors further provide additional security due to their strength. Further still, windows can be placed within rolling doors such that when the cover member is extended, an occupant of the workspace enclosure may be capable of viewing outside. Windows may also be advantageous in that they allow ambient light to enter the workspace enclosure.
Rolling doors may also be provided using any one of a number of possible materials. Some examples of the possible materials for the rolling door cover member include: galvanized steel, stainless steel, aluminum, wood, polymers, and the like. Further, rolling doors may be provided with insulation therein, thus providing additional protection from the possible environmental conditions. The choice of material for the cover member may be made to minimize weight, minimize price, maximize anti-corrosive properties, maximize water impenetrability, maximize security, and the like.
In one embodiment, the workspace enclosure functions to enhance security of the modular enclosure housing the protective devices. In this embodiment, the cover member includes a locking mechanism to secure the cover member in extended position unless unlocked. Also, where one or more guide members are fitted with protective barriers in the form of access doors (or include access doors), these access doors may include a locking mechanism such that access to the panels through the protective barrier may be accomplished only by unlocking the door. Further, the guide members may include locking mechanisms that hold the position of the guide members in an extended position unless unlocked. The locking mechanisms may be disengaged without the use of a key, but may be accessible only from within the enclosed workspace. That is, in order to disengage the locking mechanisms of the guide members themselves, one must first enter the enclosed workspace by either: 1) unlocking, opening, and passing through the cover member; or, 2) unlocking, opening, and passing through a lockable door included within, or formed from the protective barrier.
The power system device enclosure and workspace enclosure are modular in that each module may stand on its own as needed to both provide protection, monitoring, control, and/or automation to the electric power system as well as providing a selectively extendable workspace enclosure. A single module may be installed in an electric power system substation to provide the needed power system protection, monitoring, control, and/or automation. As additional protection, monitoring, control, and/or automation is needed, additional modules may be added by installing additional modules. The additional modules may be installed adjacent to the existing module.
Each module has selectively and separately extendable covers to selectively create enclosed workspaces. The Figures illustrate a first module and a second module installed adjacent to each other. For example,
While specific embodiments and applications of the disclosure have been illustrated and described, it is to be understood that the disclosure is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations apparent to those of skill in the art may be made in the arrangement, operation, and details of the methods and systems of the disclosure without departing from the spirit and scope of the disclosure.
The present patent application is a non-provisional patent application claiming the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/149,296, filed on Feb. 2, 2009 and entitled “MODULAR POWER SYSTEM CONTROL SYSTEM WITH SELECTIVE ENCLOSURE,” and U.S. Provisional Application Ser. No. 61/149,298, filed on Feb. 2, 2009 and entitled “SYSTEM FOR ENCLOSING AN OUTDOOR POWER SYSTEM CONTROL MODULE,” the complete disclosures thereof being incorporated by reference herein and a part hereof.
Number | Date | Country | |
---|---|---|---|
61149296 | Feb 2009 | US | |
61149298 | Feb 2009 | US |