The present disclosure relates to a method, an apparatus, a system and a computer program for controlling an electric power system, including planning the distribution circuits with respect to optimizing voltage, conserving energy, and reducing demand. More particularly, the disclosure relates to an implementation of planning electrical demand and energy efficiency, using advanced metering infrastructure (“AMI”)-based data analysis. This method enables the direct determination of the capability of a circuit to reduce energy usage and electrical demand based on an implementation of proposed configuration changes of an electric power system. The method may be used to accurately quantify a projection of the value of the energy efficiency and electrical demand reduction savings resulting from implementation of proposed modifications in an electric power system and compare a cost/benefit of each proposed modification. In addition, this method is capable of using the AMI-based measurements to identify specific problems with the electric power system, allowing the operation of the electric power system to be appropriately modified based on the identification of these problems.
Electricity is commonly generated at a power station by electromechanical generators, which are typically driven by heat engines fueled by chemical combustion or nuclear fission, or driven by kinetic energy flowing from water or wind. The electricity is generally supplied to end users through transmission grids as an alternating current signal. The transmission grids may include a network of power stations, transmission circuits, substations, and the like.
The generated electricity is typically stepped-up in voltage using, for example, generating step-up transformers, before supplying the electricity to a transmission system. Stepping up the voltage improves transmission efficiency by reducing the electrical current flowing in the transmission system conductors, while keeping the power transmitted nearly equal to the power input. The stepped-up voltage electricity is then transmitted through the transmission system to a distribution system, which distributes the electricity to cud users. The distribution system may include a network that carries electricity from the transmission system and delivering it to end users. Typically, the network may include medium-voltage (for example, less than 69 kV) power lines, electrical substations, transformers, low-voltage (for example, less than 1 kV) distribution wiring, electric meters, and the like.
The following, the entirety of each of which is herein incorporated by reference, describe subject matter related to power generation or distribution: Engineering Optimization Methods and Applications, First Edition, G. V. Reklaitis, A. Ravindran, K. M. Ragsdell, John Wiley and Sons, 1983; Estimating Methodology for a Large Regional Application of Conservation Voltage Reduction, J. G. De Steese, S. B. Merrick, B. W. Kennedy, IEEE Transactions on Power Systems, 1990; Power Distribution Planning Reference Book, Second Edition, H. Lee Willis, 2004; Implementation of Conservation Voltage Reduction at Commonwealth Edison, IEEE Transactions on Power Systems, D. Kirshner, 1990; Conservation Voltage Reduction at Northeast Utilities, D. M. Lauria, IEEE, 1987; Green Circuit Field Demonstrations, EPRI, Palo Alto, Calif., 2009, Report 1016520; Evaluation of Conservation Voltage Reduction (CVR) on a National Level, PNNL-19596, Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830, Pacific Northwest National Lab, July 2010; Utility Distribution System Efficiency Initiative (DEI) Phase 1, Final Market Progress Evaluation Report, No 3, E08-192 (July 2008) E08-192; Simplified Voltage Optimization (VO) Measurement and Verification Protocol, Simplified VO M&V Protocol Version 1.0, May 4, 2010; MINITAB Handbook, Updated for Release 14, fifth edition, Barbara Ryan, Brian Joiner, Jonathan Cryer, Brooks/Cole-Thomson, 2005; Minitab Software, http://www.minitab.com/en-US/products/minitab/Statistical Software provided by Minitab Corporation.
Further. U.S. patent application 61/176,398, filed on May 7, 2009 and US publication 2013/0030591 entitled VOLTAGE CONSERVATION USING ADVANCED METERING INFRASTRUCTURE AND SUBSTATION CENTRALIZED VOLTAGE CONTROL, the entirety of which is herein incorporated by reference, describe a voltage control and energy conservation system for an electric power transmission and distribution grid configured to supply electric power to a plurality of user locations.
Various embodiments described herein provide a novel method, apparatus, system and computer program for controlling an electric power system, including implementation of voltage planning for electrical energy delivery systems (EEDS) using secondary voltages measured by advanced metering infrastructure (AMI) (“AMI-based measurements”). The AMI-based measurements and voltage planning may be used to optimize the energy efficiency and demand reduction capability of the EEDS, including that specifically obtained from implementing conservation voltage reduction (CVR) in the EEDS. The AMI-based measurements and voltage planning may also be used to improve the reliability of the voltage performance for the energy usage system (EUS) and energy usage devices (EUD) attached to the electrical energy distribution connection system (EEDCS).
According to an aspect of the disclosure, the energy planning process (EPP) projects the voltage range capability of a given electrical energy delivery system (EEDS) (made up of an energy supply system (ESS) that connects electrically via the electrical energy distribution connection system (EEDCS) to one or more energy usage systems (EUS)) at the customer secondary level (the EUS) by measuring the level of change in energy usage from voltage management for the EEDS. The EPP can also determine potential impacts of proposed modifications to the equipment and/or equipment configuration of the EEDS and/or to an energy usage device (EUD) at some electrical point(s) on an electrical energy delivery system (EEDS) made up of many energy usage devices randomly using energy at any given time during the measurement. The purpose of the energy validation process (EVP) is to measure the level of change in energy usage for the EEDS for a change in voltage level. The specifics of the EVP are covered in patent application No. 61/789,085, entitled ELECTRIC POWER SYSTEM CONTROL WITH MEASUREMENT OF ENERGY DEMAND AND ENERGY EFFICIENCY USING T-DISTRIBUTIONS, filed on Mar. 15, 2013 (“the co-pending/P006 application”), the entirety of which is incorporated herein. One purpose of the EPP system of the disclosed embodiments is to estimate the capability of the EEDS to accommodate voltage change and predict the level of change available. The potential savings in energy provided by the proposed modification to the system can be calculated by multiplying the CVR factor (% change in energy/% change in voltage) (as may be calculated by the EVP, as described in the co-pending/P006 application) by the available change in voltage (as determined by the EPP) to determine the available energy and demand savings over the time interval being studied. The electrical energy supply to the electrical energy delivery system (EEDS) is measured in watts, kilowatts (kw), or Megawatts (Mw) (a) at the supply point of the ESS and (b) at the energy user system (EUS) or meter point. This measurement records the average usage of energy (AUE) at each of the supply and meter points over set time periods such as one hour.
The test for energy use improvement is divided into two basic time periods: The first is the time period when the improvement is not included, i.e., in “OFF” state. The second time period is when the improvement is included, i.e., in “ON” state. Two variables must be determined to estimate the savings capability for a modification in the EEDS: The available voltage change in voltage created by the modification and the EEDS capacity for energy change with respect to voltage change (the CVR factor, the calculation of which is described in the co-pending/P006 application).
The calculation of the change in voltage capability is the novel approach to conservation voltage reduction planning using a novel characterization of the BEDS voltage relationships that does not require a detailed loadflow model to implement. The input levels to the EEDCS from the ESS are recorded at set intervals, such as one hour periods for the time being studied. The input levels to the EUS from the EEDCS, at the same intervals for the time being studied, are measured using the AMI system and recorded. The EEDS specific relationship between the ESS measurements and the EUS usage measurements is characterized using a linear regression technique over the study period. This calculation specifically relates the effects of changes in load at the ESS to change in voltage uniquely to each customer EUS using a common methodology.
Once these linear relationships have been calculated, a simple linear model is built to represent the complex behavior of voltage at various loading levels including the effects of switching unique EUS specific loads that are embedded in the AMI collected data (e.g., the data includes the “ON” and “OFF” nature of the load switching occurring at the EUS). Then, the specific planned modification is related to the linear model so the model can calculate the new voltage ranges available from the planned modification. Using this simple linear model is a novel method of planning and predicting the voltage behavior of an EEDS caused by modifications to the EEDS.
The relationships between the modification (e.g., adding/removing capacitor banks, adding/removing regulators, reducing impedance, or adding distributed generation) are developed first by using a simple system of one ESS and a simple single phase line and a single EUS with a base load and two repenting switched loads. By comparing a traditional loadflow model of the simplified EEDS to the linear statistical representation of the voltage characteristics, the linear model changes can be obtained to relate the modifications to specific changes in the linear model. Once this is done, proposed modifications are easily checked to predict the voltage range effects and the corresponding BEDS energy savings and demand savings using the CVR factor.
Once the linear model is built then the model can be used to apply simple linear optimization to determine the best method of improving the EEDS to meet the desired energy modification. In addition, this method can optimize the cost/benefit of modifications allowing the user to select the best choice of modifications for the EEDS.
According to a further aspect of the disclosure, the energy planning process (EPP) can be used to take the AMI data from multiple AMI EUS points and build a linear model of the voltage using the linearization technique. These multiple point models can be used to predict voltage behavior for a larger radial system (e.g., a group of contiguous transmission elements that emanate from a single point of connection) by relating the larger system linear characteristics to the system modification of capacitor installation, regulator installation, and impedance modifications to allow the building of a simple linear model of the voltage characteristics with multiple modifications made. With the new model representing the modifications the optimization can optimize the cost/benefit of various modifications, thus allowing the user to select the best choice of modifications for the EEDS.
According to a further aspect of the disclosure, the energy planning process (EPP) can be used to Take the AMI data from multiple AMI EUS points and multiple ESS points and build a linear model of the voltage using the linearization technique. These multiple ESS and EUS point models can be used to predict voltage behavior for a larger radial system by relating the larger system linear characteristics to the system modification of capacitor installation, regulator installation, and impedance modifications to allow the building of a simple linear model of the voltage characteristics with multiple modifications made. With the new model representing the modifications the optimization can optimize the cost/benefit of various modifications, thus allowing the user to select the best choice of modifications for the EEDS.
According to a farther aspect of the disclosure, the energy planning process (EPP) can be used to take the AMI data from multiple AMI EUS points and multiple ESS points and build a linear model of the voltage using the linearization technique. The linear model that exists for normal operation can be determined based on the characteristics of the linearization. Using this normal operation model as a “fingerprint”, the other EUS points on the EEDS can be filtered to determine the ones, if any, that are displaying abnormal behavior characteristics and the abnormal EUS points can be compared against a list of expected characteristics denoting specific abnormal behavior that represents the potential of low reliability performance. As an example, the characteristics of a poorly connected meter base has been characterized to have certain linear characteristics in the model. The observed linear characteristics that represent this abnormal condition can be used to identify any of the EUS meters that exhibit this behavior, using the voltage data from AMI. This allows resolution of the abnormality before customer equipment failure occurs and significantly improves the reliability of the EEDS.
According to a further aspect of the disclosure, the energy planning process (EPP) can be used to take the AMI data from multiple AMI EUS points and multiple ESS points and build a linear model of the voltage using the linearization technique. Using this model and the measured AMI data the EPP can be used to project the initial group of meters that can be used in the voltage management system to control the minimum level of voltage across the EEDS for implementation of CVR.
According to a further aspect of the disclosure, the energy planning process (EPP) can be used to take lite AMI data from multiple AMI EUS points and multiple ESS points and build a linear model of the voltage using the linearization technique. The voltage data can be used to provide ligation information about the meter connection points on the circuit using voltage correlation analysis. This method matches the voltages by magnitude and by phase using a technique that uses the voltage data for each meter to provide the statistical analysis. Common phase voltage movement is correlated and common voltage movement by circuit is identified using linear regression techniques. This information when combined with the latitude and longitude information on the meter can provide Specific connectivity checks for primary based applications such as outage management and DMS real-time models.
Additional features, advantages, and embodiments of the disclosure may be set forth or apparent from consideration of the detailed description and drawings. Moreover, it is to be understood that both the foregoing summary of the disclosure and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the disclosure as claimed.
The accompanying drawings, which are included to provide a further understanding of the disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and together with the detailed description serve to explain the principles of the disclosure. No attempt is made to show structural details of the disclosure in more detail than may be necessary for a fundamental understanding of the disclosure and the various ways in which it may be practiced. In the drawings:
The present disclosure is further described in the detailed description that follows.
The disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if net explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the disclosure may be practiced and to further enable those of skill in the art to practice the embodiments of the disclosure. Accordingly, the examples and embodiments herein should not be construed as limiting the scope of the disclosure. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
A “computer”, as used in this disclosure, means any machine, device, circuit, component, or module, or any system of machines, devices, circuits, components, modules, or the like, which are capable of manipulating data according to one or more instructions, such as, for example, without limitation, a processor, a microprocessor, a central processing unit, a general purpose computer, a super computer, a personal computer, a laptop computer, a palmtop computer, a notebook computer, a desktop computer, a workstation computer, a server, or the like, or an array of processors, microprocessors, central processing units, general purpose computers, supercomputers, personal computers, laptop computers, palmtop computers, notebook computers, desktop computers, workstation computers, servers, or the like.
A “server”, as used in this disclosure, means any combination of Software and/or hardware, including at least one application and/or at least one computer to perform services for connected clients as part of a client-server architecture. The at least one server application may include, but is not limited to, for example, an application program that can accept connections to service requests from clients by sending back responses to the clients. The server may be configured to run the at least one application, often under heavy workloads, unattended, for extended periods of time with minimal human direction. The server may include a plurality of computers configured, with the at least one application being divided among the computers depending upon the workload. For example, under light loading, the at least one application can run on a single computer. However, under heavy loading, multiple computers may be required to run the at least one application. The server, or any if its computers, may also be used as a workstation.
A “database”, as used in this disclosure, means any combination of software and/or hardware, including at least one application and/or at least one computer. The database may include a structured collection of records or data organized according to a database model, such as, for example, but not limited to at least one of a relational model, a hierarchical model, a network model or the like. The database may include a database management system application (DBMS) as is known in the art. At least one application may include, hut is not limited to, for example, an application program that can accept connections to service requests from clients by sending back responses to the clients. The database may be configured to run the at least one application, often under heavy workloads, unattended, for extended periods of time with minimal human direction.
A “communication link”, as used in this disclosure, means u wired and/or wireless medium that conveys data or information between at least two points. The wired or wireless medium may include, for example, a metallic conductor link, a radio frequency (RF) communication link, on Infrared (IR) communication link, an optical communication link, or the like, without limitation. The RF communication link may include, for example, WiFi, WiMAX, IEEE 802.11, DECT, 0G, 1G, 2G, 3G or 4G cellular standards, Bluetooth, and the like.
The terms “including”, “comprising” and variations thereof, as used in this disclosure, mean “including, but not limited to” unless expressly specified otherwise.
The terms “a”, “an”, and “the”, as used in this disclosure, means “one or more”, unless expressly specified otherwise.
Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries.
Although process steps, method steps, algorithms, or the like, may be described in a sequential order, such processes, methods and algorithms may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps lie performed in that order. The steps of the processes, methods or algorithms described herein may be performed in any order practical. Further, some steps may be performed simultaneously.
When a single device or article is described herein, it will be readily apparent that more than one device or article may be used in place of a single device or article. Similarly, where more than one device or article is described herein, it will be readily apparent that a single device or article may be used in place of the more than one device or article. The functionality or the features of a device may be alternatively embodied by one or more other devices which are not explicitly described as having such functionality or features.
A “computer-readable medium”, as used in this disclosure, means any medium that participates in providing data (for example, instructions) which may be read by a computer. Such a medium may take many forms, including non-volatile media, volatile media, and transmission media. Non-volatile media may include, for example, optical or magnetic disks and other persistent memory. Volatile media may include dynamic random access memory (DRAM). Transmission media may include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor. Transmission media may include or convey acoustic waves, light waves and electromagnetic emissions, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
Various forms of computer readable media may be involved in carrying sequences of instructions to a computer. For example, sequences of instruction (i) may be delivered from a RAM to a processor, (ii) may be carried over a wireless transmission medium, and/or (iii) may be formatted according to numerous formats, standards or protocols, including, for example, WiFi. WiMAX, IEEE 802.11, DECT, 0G, 1G, 2G, 3G or 4G cellular standards, Bluetooth, or the like.
According to one non-limiting example of the disclosure, an energy planning process (EPP) system 1700 (shown in
The EPP system 1700 reads the historical databases 470 via communication link 1740 for the AMI data. The EPP system 1700 can process this historical data along with measured AMI data to identify problems, if any, on the EEDS system 700. The EPP system 1700 is also able to identify any outlier points in the analysis caused by proposed system modifications and to identify the initial meters to be used for monitoring by VCC system 200 until the adaptive process (discussed in the 2013/0030591 publication) is initiated by the control system.
The VCC system 200 is also configured to monitor via communication link 610 energy change data from EVP system 600 and determine one or more energy delivery parameters at the EC system (or voltage controller) 400. The EC system 400 may then provide the one or more energy delivery parameters CED to the ER system 500 to adjust the energy delivered to a plurality of users for maximum energy conservation. Similarly, the EC system 400 may use the energy change data to control the EEDS 700 in other ways. For example. Components of the EEDS 700 may be modified, adjusted, added or deleted, including the addition of capacitor banks, modification of voltage regulators, changes to end-user equipment to modify customer efficiency, and other control actions.
The VCC system 200 may be integrated into, for example, an existing load curtailment plan of an electrical power supply system. The electrical power supply system may include on emergency voltage reduction plan, which may be activated when one or more predetermined events are triggered. The predetermined events may include, for example, an emergency, an overheating of electrical conductors, when the electrical power output from the transformer exceeds, for example, 80% of its power rating, or the like. The VCC system 200 is configured to yield to the load curtailment plan when the one or more predetermined events are triggered, allowing the load curtailment plan to be executed to reduce the voltage of the electrical power supplied to the plurality of users.
As seen in
Each of the users 150, 160 may include an Advanced Meter Infrastructure (AMI) 330. The AMI 330 may be coupled to a Regional Operations Center (ROC) 180. The ROC 180 may be coupled to the AMI 330, by means of a plurality of communication links 175, 184, 188, a network 170 and/or a wireless communication system 190. The wireless communication system 190 may include, lint is not limited to, for example, an RF transceiver, a satellite transceiver, and/or the like.
The network 170 may include, for example, at least one of the Internet, a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a personal area network (PAN), a campus area network, a corporate area network, the electrical transmission media 125, 135 and transformers 140, 165, 167, a global area network (GAN), a broadband area network (BAN), or the tike, any of which may be configured to communicate data via a wireless and/or a wired communication medium. The network 170 may be configured to include a network topology such as, for example, a ring, a mesh, a line, a tree, a star, a bus, a full connection, or the like.
The AMI 330 may include any one or more of the following: A smart meter; a network interface (for example, a WAN interface, or the like); firmware; software; hardware; and the like. The AMI may be configured to determine any one or more of the following: kilo-Watt-hours (kWh) delivered; kWh received; kWh delivered plus kWh received: kWh delivered minus kWh received; interval data; demand data; voltage; current; phase: and the like. If the AMI is a three phase meter, then the low phase voltage may be used in the average calculation, or the values for each phase may be used independently, if the meter is a single phase meter, then the single voltage component will be averaged.
The AMI 330 may further include one or more collectors 330 (shown in
The VCC system 200 plugs into the DMS and AMI systems to execute the voltage control function. In addition, the EVP system 600 collects weather data and uses the AMI data from the ESS system 800 to calculate the energy savings level achieved by the VCC system 200. In addition, the EPP system 1700 provides a process to continually improve the performance of the EEDS by periodically reviewing the historical AMI voltage data and providing identification of problem EUS voltage performance and the modifications needed to increase the efficiency and reliability of the EEDS system 700, using the VCC system 200.
VCC System 200
The VCC system 200 minimizes power system losses, reduces user energy consumption and provides precise user voltage control. The VCC system 200 may include a closed loop process control application that uses user voltage data provided by the ED system 300 to control, for example, a voltage set point VSP on a distribution circuit (not shown) within the ER system 500. That is, the VCC system 200 may control the voltages VSupply(t) of the electrical power ESupply(t) supplied to the users 150, 160, by adjusting the voltage set point VSP of the distribution circuit in the ER system 500, which may include, for example, one or more load lap changing (LTC) transformers, one or more voltage regulators, or other voltage controlling equipment to maintain a tighter band of operation of the voltages VDelivered(t) of the electric power EDelivered(t) delivered to the users 150, 160, to lower power losses and facilitate efficient use of electrical power EDelivered(t) at the user locations 150 or 160.
The VCC system 200 controls or adjusts the voltage VSupply(t) of the electrical power ESupply(t) supplied from the EC system 500 based on AMI data, which includes measured voltage VMeter(t) data from the users 150, 160 in the ED system 300, and based on validation data from the EVP system 600 and information received from the EPP system 1700. The VCC system 200 may adjust the voltage set point VSP at the substation or line regulator level in the ER system 500 by, for example, adjusting the LTC transformer (not shown), circuit regulators (not shown), or the like, to maintain the user voltages VMeter(t) in a target voltage band VBand-n, which may include a safe nominal operating range.
The VCC system 200 is configured to maintain the electrical power EDelivered(t) delivered to the users 150, 160 within one or more voltage bands VBand-n. For example, the energy may be delivered in two or more voltage bands VBand-n substantially simultaneously, where the two or more voltage bands may be substantially the same or different. The value Vband-n may be determined by the following expression [1]:
VBand-n=VSP+ΔV [1]
where VBand-n is a range of voltages, n is a positive integer greater than zero corresponding to the number of voltage bands VBand that may be handled at substantially the same time, VSP is the voltage set point value and ΔV is a voltage deviation range.
For example, the VCC system 200 may maintain the electrical power EDelivered(t) delivered to the users 150, 160 within a band VBand-1 equal to, for example, 111V to 129V for rural applications, where VSP is set to 120V and ΔV is set to a deviation of seven-and-one-half percent (+/−7.5%). Similarly, the VCC system 200 may maintain the electrical power EDelivered(t) delivered to the users 150, 160 within a band VBand-2 equal to, for example, 114V to 126V for urban applications, where VSP is set to 120V and ΔV is set to a deviation of five (+/−5%).
The VCC system 200 may maintain the electrical power EDelivered(t) delivered to the users 150, 160 at any voltage band VBand-n usable by the users 150, 160, by determining appropriate values for VSP and ΔV. In this regard, the values VSP and ΔV may be determined by the EC system 400 based on the energy usage information for users 150, 160, received from the ED system 300.
The EC system 400 may send the VSP and ΔV values to the ER system 500 as energy delivery parameters CED, which may also include the value VBand-n. The ER system 500 may then control and maintain the voltage VDelivered(t) of the electrical power EDelivered(t) delivered to the users 150, 160, within the voltage band VBand-n. The energy delivery parameters CED may further include, for example, load-tap-changer (LTC) control commands.
The EVP system 600 may further measure and validate energy savings by comparing energy usage by the users 150, 160 before a change m the voltage set point value VSP (or voltage band VBand-n) to the energy usage by the users 150, 160 after a change in the voltage set point value VSP (or voltage band VBand-n), according to principles of the disclosure. These measurements and validations may be used to determine the effect in overall energy savings by, for example, lowering the voltage VDelivered(t) of the electrical power EDelivered(t) delivered to the users 150, 160, and to determine optimal delivery voltage bands VBand-n for the energy power EDelivered(t) delivered to the users 150, 160.
ER System 500
The ER system 500 may communicate with the ED system 300 and/or EC system 400 by means of the network 170. The ER system 500 is coupled to the network 170 and the EC system 400 by means of communication links 510 and 430, respectively. The EC system 500 is also coupled to the ED system 300 by means of the power lines 340, which may include communication links.
The ER system 500 includes a substation 530 which receives the electrical power supply Eln(t) from, for example, the power generating station 110 (shown in
The substation 530 may include a transformer (not shown), such as, for example, a load tap change (LTC) transformer. In this regard, the substation 530 may further include an automatic tap changer mechanism (not shown), which is configured to automatically change the taps on the LTC transformer. The tap changer mechanism may change the taps on the LTC transformer either on-load (on-loud tap changer, or OLTC) or off-load, or both. The tap changer mechanism may be motor driven and computer controlled. The substation 530 may also include a buck/boost transformer to adjust and maximize the power factor of the electrical power EDelivered(t) supplied to the users on power supply lines 340.
Additionally (or alternatively), the substation 530 may include one or more voltage regulators, or other voltage controlling equipment, as known by those having ordinary skill in the art, that may be controlled to maintain the output the voltage component VSupply(t) of the electrical power ESupply(t) at a predetermined voltage value or within a predetermined range of voltage values.
The substation 530 receives the energy delivery parameters CED from the EC system 400 on the communication link 430. The energy delivery parameters CED may include, for example, load tap coefficients when an LTC transformer is used to step-down the input voltage component Vln(t) of the electrical power Eln(t) to the voltage component VSupply(t) of the electrical power ESupply(t) supplied to the ED system 300. In this regard, the load tap coefficients may be used by the ER system 500 to keep the voltage component VSupply(t) on the low-voltage side of the LTC transformer at a predetermined voltage value or within a predetermined range of voltage values.
The LTC transformer may include, for example, seventeen or more steps (thirty-five or more available positions), each of which may be selected based on the received load lap coefficients. Each change in step may adjust the voltage component VSupply(t) on the low voltage side of the LTC transformer by as little as, for example, about five-sixteenths (0.3%), or less.
Alternatively, the LTC transformer may include fewer than seventeen steps. Similarly, each change in step of the LTC transformer may adjust the voltage component VSupply(t) on the low voltage side of the LTC transformer by more than, for example, about five-sixteenths (0.3%).
The voltage component VSupply(t) may be measured and monitored on the low voltage side of the LTC transformer by, for example, sampling or continuously measuring the voltage component VSupply(t) of the stepped-down electrical power and storing the measured voltage component VSupply(t) values as a function of time t in a storage (not shown), such as, for example, a computer readable medium. The voltage component VSupply(t) may be monitored on, for example, a substation distribution bus, or the like. Further, the voltage component VSupply(t) may be measured at any point where measurements could be made for the transmission or distribution systems in the ER system 500.
Similarly, the voltage component Vln(t) of the electrical power Eln(t) input to the high voltage side of the LTC transformer may be measured and monitored. Further, the current component ISupply(t) of the stepped-down electrical power ESupply(t) and the current component Iln(t) of the electrical power Eln(t) may also be measured and monitored. In this regard, a phase difference φln(t) between the voltage Vln(t) and current Iln(t) components of the electrical power Eln(t) may be determined and monitored. Similarly, a phase difference φSupply(t) between the voltage VSupply(t) and current ISupply(t) components of the electrical energy supply ESupply(t) may be determined and monitored.
The ER system 500 may provide electrical energy supply status information to the EC system 400 on the communication links 430 or 510. The electrical energy supply information may include the monitored voltage component VSupply(t). The electrical energy supply information may further include the voltage component Vln(t), current components Iln(t), ISupply(t), and/or phase difference values φln(t), φSupply(t), as a function of time t. The electrical energy supply status information may also include, for example, the load rating of the LTC transformer.
The electrical energy supply status information may be provided to the EC system 400 at periodic intervals of time, such as, for example, every second, 5 sec., 10 sec., 30 sec., 60 sec., 120 sec., 600 sec., or any other value within the scope and spirit of the disclosure, as determined by one having ordinary skill in the art. The periodic intervals of time may be set by the EC system 400 or the ER system 500. Alternatively, the electrical energy supply status information may be provided to the EC system 400 or ER system 500 intermittently.
Further, the electrical energy supply status information may be forwarded to the EC system 400 in response to a request by the EC system 400, or when a predetermined event is detected. The predetermined event may include, for example, when the voltage component VSupply(t) changes by an amount greater (or less) than a defined threshold value VSupply/Threshold (for example, 130V) over a predetermined interval of time, a temperature of one or more components in the ER system 500 exceeds a defined temperature threshold, or the like.
ED System 300
The ED system 300 includes a plurality of AMIs 330. The ED system 300 may further include at least one collector 350, which is optional. The ED system 300 may be coupled to the network 170 by means of a communication link 310. The collector 350 may be coupled to the plurality of AMIs 330 by means of a communication link 320. The AMIs 330 may be coupled to the ER system 500 by means of one or more power supply lines 340, which may also include communication links.
Each AMI 330 is configured to measure, store and report energy usage data by the associated users 150, 160 (shown in
The AMIs 330 may average the measured voltage VMeter(t) and/or IMeter(t) values over predetermined time intervals (for example, 5 min., 10 min., 30 min., or more). The AMIs 330 may store the measured electrical power usage EMeter(t), including the measured voltage component VMeter(t) and/or current component IMeter(t) as AMI data in a local (or remote) storage (not shown), such as, for example, a computer readable medium.
Each AMI 330 is also capable of operating in a “report-by-exception” mode for any voltage VMeter(t), current IMeter(t), or energy usage EMeter(t) that falls outside of a target component band. The target component hand may include, a target voltage band, a target current band, or a target energy usage band. In the “report-by-except ion” mode, the AMI 330 may sua sponte initiate communication and send AMI data to the EC system 400. The “report-by-exception” mode may be used to reconfigure the AMIs 330 used to represent for example, the lowest voltages on the circuit as required by changing system conditions.
The AMI data may be periodically provided to lite collector 350 by means of the communication links 320. Additionally, the AMIs 330 may provide the AMI data in response to a AMI data request signal received from the collector 350 on the communication links 320.
Alternatively (or additionally), the AMI data may be periodically provided directly to the EC system 400 (for example, the MAS 460) from the plurality of AMIs, by means of, for example, communication finks 320,410 and network 170. In this regard, the collector 350 may be bypassed, or eliminated from the ED system 300. Furthermore, the AMIs 330 may provide the AMI data directly to the EC system 400 in response to a AMI data request signal received from the RC system 400. In the absence of the collector 350, the EC system (for example, the MAS 460) may carry out the functionality of the collector 350 described herein.
The request signal may include, for example, a query (or read) signal and a AMI identification signal that identifies the particular AMI 330 from which AMI data is sought. The AMI data may include the following information for each AMI 330, including, for example, kilo-Watt-hours (kWh) delivered data, kWh received data, kWh delivered plus kWh received data, kWh delivered minus kWh received data, voltage level data, current level data, phase angle between voltage and current, kVar data, time interval data, demand data, and the like.
Additionally, the AMIs 330 may send the AMI data to the meter automation system server MAS 460. The AMI data may be sent to the MAS 460 periodically according to a predetermined schedule or upon request from the MAS 460.
The collector 350 is configured to receive the AMI data from each of the plurality of AMIs 330 via the communication links 320. The collector 350 stores the received AMI data in a local storage mot shown), such as, for example, a computer readable medium (e.g., a non-transitory computer readable medium). The collector 350 compiles the received AMI data into a collector data. In this regard, the received AMI data may be aggregated into the collector data based on, for example, a geographic zone in which the AMIs 330 are located, a particular time band (or range) during which the AMI data was collected, a subset of AMIs 330 identified in a collector control signal, and the tike. In compiling the received AMI data, the collector 350 may average the voltage component VMeter(t) values received in the AMI data from all (or a subset of all) of the AMIs 330.
The EC system 400 is able to select or alter a subset of all of the AMIs 330 to be monitored for predetermined time intervals, which may include for example 15 minute intervals. It is noted that the predetermined time intervals may be shorter or longer than 15 minutes. The subset of all of the AMIs 330 is selectable and can be altered by the EC system 400 as needed to maintain minimum level control of the voltage VSupply(t) supplied to the AMIs 330.
The collector 350 may also average the electrical power EMeter(t) values received in the AMI data from ail (or a subset of all) of the AMIs 330. The compiled collector data may be provided by the collector 350 to the EC system 400 by means of the communication link 310 and network 170. For example, the collector 350 may send the compiled collector data to the MAS 460 (or ROC 490) in the EC system 400.
The collector 350 is configured to receive collector control signals over the network 170 and communication link 310 from the EC system 400. Based on the received collector control signals, the collector 350 is further configured to select particular ones of the plurality of AMIs 330 and query the meters for AMI data by sending a AMI data request signal to the selected AMIs 330. The collector 350 may then collect the AMI data that it receives from the selected AMIs 330 in response to the queries. The selectable AMIs 330 may include any one or more of the plurality of AMIs 330. The collector control signals may include, for example, an identification of the AMIs 330 to be queried (or read), time(s) at which the identified AMIs 330 are to measure the VMeter(t), IMeter(t), Emeter(t) and/or φMeter(t) (φMeter(t) is the phase difference between the voltage VMeter(t) and current IMeter(t) components of the electrical power EMeter(t) measured at the identified AMI 330), energy usage information since the last reading from the identified AMI 330, and the like. The collector 350 may then compile and send the compiled collector data to the MAS 460 (and/or ROC 490) in the KC system 400.
EC System 400
The EC system 400 may communicate with the ED system 300 and/or ER system 500 by means of the network 170. The EC system 400 is coupled to the network 170 by means of one or more communication links 410. The EC system 400 may also communicate directly with the ER system 500 by means of a communication link 430.
The EC system 400 includes the MAS 460, a database (DB) 470, a distribution management system (DMS) 480, and a regional operation center CROC) 490. The ROC 490 may include a computer (ROC computer) 495, a server (not shown) and a database (not shown). The MAS 460 may be coupled to the DB 470 and DMS 480 by means of communication links 420 and 440, respectively. The DMS 480 may be coupled to the ROC 490 and ER SYSTEM 500 by means of the communication link 430. The database 470 may be located at the same location as (for example, proximate to, or within) the MAS 460, or at a remote location that may lie accessible via, for example, the network 170.
The EC system 400 is configured to de-select, from the subset of monitored AMIs 330, a AMI 330 that the EC system 400 previously selected to monitor, and select the AMI 330 that is outside of the subset of monitored AMIs 330, but which is operating in the report-by-exception mode. The EC system 400 may carry out this change after receiving the sua sponte AMI data from the non-selected AMI 330. In this regard, the EC system 400 may remove or terminate a connection to the de-selected AMI 330 and create a new connection to the newly selected AMI 330 operating in the report-by-exception mode. The EC system 400 is further configured to select any one or more of the plurality of AMIs 330 from which it receives AMI data comprising, for example, the lowest measured voltage component VMeter(t), and generate on energy delivery parameter CED based on the AMI data received from the AMI(s) 330 that provide the lowest measured voltage component VMeter(t).
The MAS 460 may include a computer (not shown) that is configured to receive the collector data from the collector 350, which includes AMI data collected from a selected subset (or all) of the AMIs 330. The MAS 460 is further configured to retrieve and forward AMI data to the ROC 490 in response to queries received from the ROC 490. The MAS 460 may store the collector data, including AMI data in a local storage and/or in the DB 470.
The DMS 480 may include a computer that is configured to receive the electrical energy supply status information from the substation 530. The DMS 480 is further configured to retrieve and forward measured voltage component VMeter(t) values and electrical power EMeter(t) values in response to queries received from the ROC 490. The DMS 480 may be further configured to retrieve and forward measured current component IMeter(t) values in response to queries received from the ROC 490. The DMS 480 also may be further configured to retrieve all “import-by-exception” voltages VMeter(t) from the AMIs 330 operating in the “report-by-exception” mode and designate the voltages VMeter(t) as one of the control points to be continuously read at predetermined times (for example, every 15 minutes, or less (or more), or at varying times). The “report-by-exception voltages VMeter(t) may be used to control the UC 500 set points.
The DB 470 may include a plurality of relational databases (not shown). The DB 470 includes a large number of records that include historical data for each AMI 330, each collector 350, each substation 530, and the geographic area(s) (including latitude, longitude, and altitude) where the AMIs 330, collectors 350, and substations 530 are located.
For instance, the DB 470 may include any one or more of the following information for each AMI 330, including; a geographic location (including latitude, longitude, and altitude); a AMI identification number; an account number; an account name; a billing address; a telephone number; a AMI type, including model and serial number, a date when the AMI was first placed into use; a time stamp of when the AMI was last read (or queried); the AMI data received at the time of the last reading; a schedule of when the AMI is to be read (or queried), including the types of information that are to be read; and the like.
The historical AMI data may include, for example, the electrical power EMeter(t) used by the particular AMI 330, as a function of time. Time t may be measured in, for example, discrete intervals at which the electrical power EMeter(t) magnitude (kWh) of the received electrical power EMeter(t) is measured or determined at the AMI 330. The historical AMI data includes a measured voltage component VMeter(t) of the electrical energy EMeter(t) received at the AMI 330. The historical AMI data may further include a measured current component IMeter(t) and/or phase difference φMeter(t) of the electrical power EMeter(t) received at the AMI 330.
As noted earlier, the voltage component VMeter(t) may be measured at a sampling period of, for example, every five seconds, ten seconds, thirty seconds, one minute, five minutes, ten minutes, fifteen minutes, or the like. The current component IMeter(t) and/or the received electrical power EMeter(t) values may also be measured at substantially the same times as the voltage component VMeter(t).
Given the low cost of memory, the DB 470 may include historical data from the very beginning of when the AMI data was first collected from the AMIs 330 through to the most recent AMI data received from the AMI 330.
The DB 470 may include a time value associated with each measured voltage component VMeter(t), current component IMeter(t), phase component φMeter(t) and/or electrical power EMeter(t), which may include a timestamp value generated at the AMI 330. The timestamp value may include, for example, a year, a month, a day, an hour, a minute, a second, and a fraction of a second. Alternatively, the timestamp may be a coded value which may be decoded to determine a year, a month, a day, an hour, a minute, a second, and a fraction of a second, using, for example, a look up table. The ROC 490 and/or AMIs 330 may be configured to receive, for example, a WWVB atomic clock signal transmitted by the U.S. National Institute of Standards and Technology (NIST), or the like and synchronize its internal clock (not shown) to the WWVB atomic clock signal.
The historical data in the DB 470 may further include historical collector data associated with each collector 350. The historical collector data may include any one or more of the following information, including, for example: the particular AMIs 330 associated with each collector 350; the geographic location (including latitude, longitude, and altitude) of each collector 350; a collector type, including model and serial number; a dale when the collector 350 was first placed into use; a time stamp of when collector data was last received from the collector 350; the collector data that was received; a schedule of when the collector 350 is expected to send collector data, including the types of information that are to be sent; and the like.
The historical collector data may further include, for example, an external temperature value TCollector(t) measured outside of each collector 350 at time t. The historical collector data may further include, for example, any one or more of the following for each collector 350: an atmospheric pressure value PCollector(t) measured proximate the collector 350 at time t; a humidity value HCollector(t) measured proximate the collector 350 at time t; a wind vector value WCollector(t) measured proximate the collector 350 at time t, including direction and magnitude of the measured wind; a solar irradiant value LCollector(t) (kW/m2) measured proximate the collector 350 at time t; and the like.
The historical data in the DB 470 may further include historical substation data associated with each substation 530. The historical substation data may include any one or more of the following information, including, for example: the identifications of the particular AMIs 330 supplied with electrical energy ESupply(t) by the substation 530; the geographic location (including latitude, longitude, and altitude) of the substation 530; the number of distribution circuits: the number of transformers; a transformer type of each transformer, including model, serial number and maximum Megavolt Ampere (MVA) rating; the number of voltage regulators; a voltage regulator type of each voltage regulator, including model and serial number; a time stamp of when substation data was last received from the substation 530; the substation data that was received; a schedule of when the substation 530 is expected to provide electrical energy supply status information, including the types of information that are to be provided; and the like.
The historical substation data may include, for example, the electrical power ESupply(t) supplied to each particular AMI 530, where ESupply(t) is measured or determined at the output of the substation 530. The historical substation data includes a measured voltage component VSupply(t) of the supplied electrical power ESupply(t), which may be measured, for example, on the distribution bus (not shown) from the transformer. The historical substation data may further include a measured current component ISupply(t) of the supplied electrical power ESupply(t). As noted earlier, the voltage component VSupply(t), the current component ISupply(t), and/or the electrical power ESupply(t) may be measured at a sampling period of, for example, every live seconds, ten seconds, thirty seconds, a minute, five minutes, ten minutes, or the like. The historical substation data may further include a phase difference value φSupply(t) between the voltage VSupply(t) and current ISupply(t) signals of the electrical power ESupply(t), which may be used to determine the power factor of the electrical power ESupply(t) supplied to the AMIs 330.
The historical substation data may further include, for example, the electrical power Eln(t) received on the line 520 at the input of the substation 530, where the electrical power Eln(t) is measured or determined at the input of the substation 530. The historical substation data may include a measured voltage component Vln(t) of the received electrical power Eln(t), which may be measured, for example, at the input of the transformer. The historical substation data may further include a measured current component Iln(t) of the received electrical power Eln(t). As noted earlier, the voltage component Vln(t), the current component Iln(t), and/or the electrical power Eln(t) may be measured at a sampling period of, for example, every five seconds, ten seconds, thirty seconds, a minute, five minutes, ten minutes, or the like. The historical substation data may further include a phase difference φln(t) between the voltage component Vln(t) and current component Iln(t) of the electrical power Eln(t). The power factor of the electrical power Eln(t) may be determined based on the phase difference φln(t).
According to an aspect of the disclosure, the EC system 400 may save aggregated kW data at the substation level, voltage data at the substation level, and weather data to compare to energy usage per AMI 330 to determine the energy savings from the VCC system 200, and using linear regression to remove the effects of weather, load growth, economic effects, and the like from the calculation.
In the VCC system 200, control may be initiated from, for example, the ROC computer 495. In this regard, a control screen 305 may be displayed on the ROC computer 495, as shown, for example, in FIG. 3 of the US 2013/0030591 publication. The control screen 305 may correspond to data for a particular substation 530 (for example, the TRABUE SUBSTATION) in the ER system 500. The ROC computer 495 can control and override (if necessary), for example, the substation 530 load tap changing transformer based on, for example, the AMI data received from the ED system 300 for the users 150, 160. The ED system 300 may determine the voltages of the electrical power supplied to the user locations 150, 160, at predetermined (or variable) intervals, such as, e.g., on average each 15 minutes, while maintaining the voltages within required voltage limits.
For system security, the substation 530 may be controlled through the direct communication link 430 from the ROC 490 and/or DMS 480, including transmission of data through communication link 430 to and from the ER 500, EUS 300 and EVP 600.
Furthermore, an operator can initiate a voltage control program on the ROC computer 490, overriding the controls. If necessary, and monitoring a time it takes to read the user voltages VMeter(t) being used for control of, for example, the substation LTC transformer (not shown) in the ER system 500.
EVP System 600
EPP System 1700
Using these principles, and the relationship in ESS 800 voltages and EUS 900 voltages, a performance criteria definition can be derived to allow full optimization of the EEDCS 1000 design based on the independent variables. Based on the linearization of the power and voltage relationships, this enables optimization on a near radial EEDCS 1000 which can be formulated as a search of the boundary conditions of the linear optimization problem.
The chart 1750 in
The linearization model, as discussed above with respect to
The next step 1506 is to identify any patterns of voltages denoting specific problems impacting voltage reliability, in accordance with this disclosure. Examples of problems which create recognizable patterns in the linearization process comparison include a poor connection between a meter and a meter base, an overloaded secondary conductor, an overloaded secondary transformer, an incorrect transformer tap setting, an incompatible type of meter connected in a meter base, and a bad neutral connection. These can be identified, for example, as a data point lying outside of the linear regression (see e.g., point X on chart 1750 of
The final step 1510 is to choose a new set of initial meters for monitoring and/or to configure the VCC 200 to operate with the new level of system performance forecasted by the EPP 1700. This information is then supplied to the VCC 200 and the EVP 600 to configure the controls over the next operating period.
While the disclosure has been described in terms of exemplary embodiments, those skilled in the art will recognize that the disclosure can be practiced with modifications in the spirit and scone of the appended claims. These examples are merely illustrative and are not meant to be an exhaustive list of all possible designs, embodiments, applications or modifications of the disclosure.
This application is a continuation of U.S. patent application Ser. No. 15/593,378, filed May 12, 2017, which is a continuation of U.S. patent application Ser. No. 14/193,872, filed on Feb. 28, 2014, now U.S. Pat. No. 9,678,520, issued Jun. 13, 2017, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application 61/794,623, filed on Mar. 15, 2013, which are hereby incorporated by reference in their entirely herein. This application is also related to U.S. patent application Ser. No. 14/564,791, filed Dec. 9, 2014, now U.S. Pat. No. 9,354,641, issued May 31, 2016, which is also hereby incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
3900842 | Calabro et al. | Aug 1975 | A |
3970898 | Baumann et al. | Jul 1976 | A |
4054830 | Harrel | Oct 1977 | A |
4234904 | Fahlesson | Nov 1980 | A |
4291377 | Schneider et al. | Sep 1981 | A |
4302750 | Wadhwani et al. | Nov 1981 | A |
4307380 | Gander | Dec 1981 | A |
4309655 | Lienhard et al. | Jan 1982 | A |
4310829 | Rey | Jan 1982 | A |
4356553 | Steinle et al. | Oct 1982 | A |
4361872 | Spalti | Nov 1982 | A |
4365302 | Elms | Dec 1982 | A |
4434400 | Halder et al. | Feb 1984 | A |
4513273 | Friedl | Apr 1985 | A |
4525668 | Lienhard et al. | Jun 1985 | A |
4540931 | Hahn | Sep 1985 | A |
4630220 | Peckinpaugh | Dec 1986 | A |
4686630 | Marsland et al. | Aug 1987 | A |
4689752 | Fernandes et al. | Aug 1987 | A |
4695737 | Rabon et al. | Sep 1987 | A |
4791520 | Stegmuller | Dec 1988 | A |
4843310 | Friedl | Jun 1989 | A |
4853620 | Halder et al. | Aug 1989 | A |
4881027 | Joder et al. | Nov 1989 | A |
4887028 | Voisine et al. | Dec 1989 | A |
4894610 | Friedl | Jan 1990 | A |
4896108 | Voisine et al. | Jan 1990 | A |
5028862 | Roth | Jul 1991 | A |
5032785 | Mathis et al. | Jul 1991 | A |
5055766 | McDermott et al. | Oct 1991 | A |
5066906 | Moore | Nov 1991 | A |
5124624 | de Vries et al. | Jun 1992 | A |
5128855 | Hilber et al. | Jul 1992 | A |
5136233 | Klinkenberg et al. | Aug 1992 | A |
5231347 | Voisine et al. | Jul 1993 | A |
5249150 | Gruber et al. | Sep 1993 | A |
5262715 | King et al. | Nov 1993 | A |
5270639 | Moore | Dec 1993 | A |
5272462 | Teyssandier et al. | Dec 1993 | A |
5298857 | Voisine et al. | Mar 1994 | A |
5343143 | Voisine et al. | Aug 1994 | A |
5422561 | Williams et al. | Jun 1995 | A |
5432507 | Mussino et al. | Jul 1995 | A |
5466973 | Griffioen | Nov 1995 | A |
5475867 | Blum | Dec 1995 | A |
5511108 | Severt et al. | Apr 1996 | A |
5552696 | Trainor et al. | Sep 1996 | A |
5602750 | Severt et al. | Feb 1997 | A |
5604414 | Milligan et al. | Feb 1997 | A |
5610394 | Lee | Mar 1997 | A |
5627759 | Bearden et al. | May 1997 | A |
5646512 | Beckwith | Jul 1997 | A |
5673252 | Johnson et al. | Sep 1997 | A |
5736848 | De Vries et al. | Apr 1998 | A |
5903548 | Delamater | May 1999 | A |
5918380 | Schleich et al. | Jul 1999 | A |
5963146 | Johnson et al. | Oct 1999 | A |
6006212 | Schleich et al. | Dec 1999 | A |
6026355 | Rahman et al. | Feb 2000 | A |
6172616 | Johnson et al. | Jan 2001 | B1 |
6218995 | Higgins et al. | Apr 2001 | B1 |
6219655 | Schleich et al. | Apr 2001 | B1 |
6311105 | Budike, Jr. | Oct 2001 | B1 |
6333975 | Brunn et al. | Dec 2001 | B1 |
6373236 | Lemay, Jr. et al. | Apr 2002 | B1 |
6373399 | Johnson et al. | Apr 2002 | B1 |
6417729 | Lemay et al. | Jul 2002 | B1 |
6555997 | De Vries et al. | Apr 2003 | B1 |
6590376 | Bammert et al. | Jul 2003 | B1 |
6618684 | Beroset et al. | Sep 2003 | B1 |
6628207 | Hemminger et al. | Sep 2003 | B1 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6636893 | Fong | Oct 2003 | B1 |
6650249 | Meyer et al. | Nov 2003 | B2 |
6653945 | Johnson et al. | Nov 2003 | B2 |
6667692 | Griffin | Dec 2003 | B2 |
6684245 | Shuey et al. | Jan 2004 | B1 |
6700902 | Meyer | Mar 2004 | B1 |
6703823 | Hemminger et al. | Mar 2004 | B1 |
6738693 | Anderson | May 2004 | B2 |
6747446 | Voisine et al. | Jun 2004 | B1 |
6747981 | Ardalan et al. | Jun 2004 | B2 |
6756914 | Fitzgerald et al. | Jun 2004 | B1 |
6757628 | Anderson et al. | Jun 2004 | B1 |
6762598 | Hemminger et al. | Jul 2004 | B1 |
6773652 | Loy et al. | Aug 2004 | B2 |
6778099 | Meyer et al. | Aug 2004 | B1 |
6798353 | Seal et al. | Sep 2004 | B2 |
6815942 | Randall et al. | Nov 2004 | B2 |
6816538 | Shuey et al. | Nov 2004 | B2 |
6832135 | Ying | Dec 2004 | B2 |
6832169 | Wakida et al. | Dec 2004 | B2 |
6838867 | Loy | Jan 2005 | B2 |
6847201 | De Vries et al. | Jan 2005 | B2 |
6859186 | Lizalek et al. | Feb 2005 | B2 |
6859742 | Randall et al. | Feb 2005 | B2 |
6867707 | Kelley et al. | Mar 2005 | B1 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6873144 | Slater et al. | Mar 2005 | B2 |
6882137 | Voisine | Apr 2005 | B1 |
6885185 | Makinson et al. | Apr 2005 | B1 |
6886876 | Mason, Jr. et al. | May 2005 | B1 |
6892144 | Slater et al. | May 2005 | B2 |
6900737 | Ardalan et al. | May 2005 | B1 |
6906507 | Briese et al. | Jun 2005 | B2 |
6906637 | Martin | Jun 2005 | B2 |
6940268 | Hemminger et al. | Sep 2005 | B2 |
6940711 | Heuell et al. | Sep 2005 | B2 |
6947854 | Swarztrauber et al. | Sep 2005 | B2 |
6954061 | Hemminger et al. | Oct 2005 | B2 |
6982390 | Heuell et al. | Jan 2006 | B2 |
6988043 | Randall | Jan 2006 | B1 |
6989667 | Loy | Jan 2006 | B2 |
6995685 | Randall | Feb 2006 | B2 |
7005844 | De Vries et al. | Feb 2006 | B2 |
7009379 | Ramirez | Mar 2006 | B2 |
7020178 | Mason, Jr. et al. | Mar 2006 | B2 |
7043381 | Wakida et al. | May 2006 | B2 |
7046682 | Carpenter et al. | May 2006 | B2 |
7064679 | Ehrke et al. | Jun 2006 | B2 |
7069117 | Wilson et al. | Jun 2006 | B2 |
7075288 | Martin et al. | Jul 2006 | B2 |
7079962 | Cornwall et al. | Jul 2006 | B2 |
7084783 | Melvin, Jr. et al. | Aug 2006 | B1 |
7089125 | Sonderegger | Aug 2006 | B2 |
7091878 | Holle et al. | Aug 2006 | B2 |
7109882 | Angelis et al. | Sep 2006 | B2 |
7112949 | Voisine | Sep 2006 | B2 |
7116243 | Schleich et al. | Oct 2006 | B2 |
7119698 | Schleich et al. | Oct 2006 | B2 |
7119713 | Shuey et al. | Oct 2006 | B2 |
7126493 | Junker et al. | Oct 2006 | B2 |
7126494 | Ardalan et al. | Oct 2006 | B2 |
7135850 | Ramirez | Nov 2006 | B2 |
7142106 | Scoggins | Nov 2006 | B2 |
7145474 | Shuey et al. | Dec 2006 | B2 |
7149605 | Chassin et al. | Dec 2006 | B2 |
7154938 | Cumeralto et al. | Dec 2006 | B2 |
7161455 | Tate et al. | Jan 2007 | B2 |
7167804 | Fridholm et al. | Jan 2007 | B2 |
7168972 | Autry et al. | Jan 2007 | B1 |
7170425 | Christopher et al. | Jan 2007 | B2 |
7176807 | Scoggins et al. | Feb 2007 | B2 |
7180282 | Schleifer | Feb 2007 | B2 |
7187906 | Mason, Jr. et al. | Mar 2007 | B2 |
7196673 | Savage et al. | Mar 2007 | B2 |
7209049 | Dusenberry et al. | Apr 2007 | B2 |
7218998 | Neale | May 2007 | B1 |
7224158 | Petr | May 2007 | B2 |
7227350 | Shuey | Jun 2007 | B2 |
7230972 | Cornwall et al. | Jun 2007 | B2 |
7236498 | Moos et al. | Jun 2007 | B1 |
7236908 | Timko et al. | Jun 2007 | B2 |
7239125 | Hemminger et al. | Jul 2007 | B2 |
7239250 | Brian et al. | Jul 2007 | B2 |
7245511 | Lancaster et al. | Jul 2007 | B2 |
7262709 | Borleske et al. | Aug 2007 | B2 |
7274187 | Loy | Sep 2007 | B2 |
7277027 | Ehrke et al. | Oct 2007 | B2 |
7283062 | Hoiness et al. | Oct 2007 | B2 |
7283580 | Cumeralto et al. | Oct 2007 | B2 |
7283916 | Cahill-O'Brien et al. | Oct 2007 | B2 |
7298134 | Weikel et al. | Nov 2007 | B2 |
7298135 | Briese et al. | Nov 2007 | B2 |
7301476 | Shuey et al. | Nov 2007 | B2 |
7308369 | Rudran et al. | Dec 2007 | B2 |
7308370 | Mason, Jr. et al. | Dec 2007 | B2 |
7312721 | Mason, Jr. et al. | Dec 2007 | B2 |
7315162 | Shuey | Jan 2008 | B2 |
7317404 | Cumeralto et al. | Jan 2008 | B2 |
7327998 | Kumar et al. | Feb 2008 | B2 |
7336200 | Osterloh et al. | Feb 2008 | B2 |
7339805 | Hemminger et al. | Mar 2008 | B2 |
7346030 | Cornwall | Mar 2008 | B2 |
7348769 | Ramirez | Mar 2008 | B2 |
7355867 | Shuey | Apr 2008 | B2 |
7362232 | Holle et al. | Apr 2008 | B2 |
7362236 | Hoiness | Apr 2008 | B2 |
7365687 | Borleske et al. | Apr 2008 | B2 |
7417420 | Shuey | Aug 2008 | B2 |
7417557 | Osterloh et al. | Aug 2008 | B2 |
7421205 | Ramirez | Sep 2008 | B2 |
7427927 | Borleske et al. | Sep 2008 | B2 |
7453373 | Cumeralto et al. | Nov 2008 | B2 |
7471516 | Voisine | Dec 2008 | B2 |
7479895 | Osterloh et al. | Jan 2009 | B2 |
7486056 | Shuey | Feb 2009 | B2 |
7495578 | Borleske | Feb 2009 | B2 |
7504821 | Shuey | Mar 2009 | B2 |
7505453 | Carpenter et al. | Mar 2009 | B2 |
7510422 | Showcatally et al. | Mar 2009 | B2 |
7516026 | Cornwall et al. | Apr 2009 | B2 |
7535378 | Cornwall | May 2009 | B2 |
7540766 | Makinson et al. | Jun 2009 | B2 |
7545135 | Holle et al. | Jun 2009 | B2 |
7545285 | Shuey et al. | Jun 2009 | B2 |
7561062 | Schleich et al. | Jul 2009 | B2 |
7561399 | Slater et al. | Jul 2009 | B2 |
7583203 | Uy et al. | Sep 2009 | B2 |
7584066 | Roytelman | Sep 2009 | B2 |
7616420 | Slater et al. | Nov 2009 | B2 |
7626489 | Berkman et al. | Dec 2009 | B2 |
7630863 | Zweigle et al. | Dec 2009 | B2 |
7639000 | Briese et al. | Dec 2009 | B2 |
7656649 | Loy et al. | Feb 2010 | B2 |
7671814 | Savage et al. | Mar 2010 | B2 |
7683642 | Martin et al. | Mar 2010 | B2 |
7688060 | Briese et al. | Mar 2010 | B2 |
7688061 | Briese et al. | Mar 2010 | B2 |
7696941 | Cunningham, Jr. | Apr 2010 | B2 |
7701199 | Makinson et al. | Apr 2010 | B2 |
7702594 | Scoggins et al. | Apr 2010 | B2 |
7729810 | Bell et al. | Jun 2010 | B2 |
7729852 | Hoiness et al. | Jun 2010 | B2 |
7742430 | Scoggins et al. | Jun 2010 | B2 |
7746054 | Shuey | Jun 2010 | B2 |
7747400 | Voisine | Jun 2010 | B2 |
7747534 | Villicana et al. | Jun 2010 | B2 |
7756030 | Clave et al. | Jul 2010 | B2 |
7756078 | Wyk et al. | Jul 2010 | B2 |
7756651 | Holdsclaw | Jul 2010 | B2 |
7761249 | Ramirez | Jul 2010 | B2 |
7764714 | Monier et al. | Jul 2010 | B2 |
7860672 | Richeson et al. | Dec 2010 | B2 |
8301314 | Deaver, Sr. et al. | Oct 2012 | B2 |
8437883 | Powell et al. | May 2013 | B2 |
8577510 | Powell et al. | Nov 2013 | B2 |
8583520 | Forbes, Jr. | Nov 2013 | B1 |
9354641 | Peskin | May 2016 | B2 |
20020072868 | Bartone et al. | Aug 2002 | A1 |
20020109607 | Cumeralto et al. | Aug 2002 | A1 |
20020128748 | Krakovich et al. | Sep 2002 | A1 |
20020158774 | Johnson et al. | Oct 2002 | A1 |
20030001754 | Johnson et al. | Jan 2003 | A1 |
20030122686 | Ehrke et al. | Jul 2003 | A1 |
20030187550 | Wilson et al. | Oct 2003 | A1 |
20040061625 | Ehrke et al. | Apr 2004 | A1 |
20040066310 | Ehrke et al. | Apr 2004 | A1 |
20040070517 | Ehrke et al. | Apr 2004 | A1 |
20040119458 | Heuell et al. | Jun 2004 | A1 |
20040150575 | Lizalek et al. | Aug 2004 | A1 |
20040192415 | Luglio et al. | Sep 2004 | A1 |
20040218616 | Ardalan et al. | Nov 2004 | A1 |
20040222783 | Loy | Nov 2004 | A1 |
20050024235 | Shuey et al. | Feb 2005 | A1 |
20050090995 | Sonderegger | Apr 2005 | A1 |
20050110480 | Martin et al. | May 2005 | A1 |
20050119841 | Martin | Jun 2005 | A1 |
20050119930 | Simon | Jun 2005 | A1 |
20050125104 | Wilson et al. | Jun 2005 | A1 |
20050212689 | Randall | Sep 2005 | A1 |
20050218873 | Shuey et al. | Oct 2005 | A1 |
20050237047 | Voisine | Oct 2005 | A1 |
20050240314 | Martinez | Oct 2005 | A1 |
20050251401 | Shuey | Nov 2005 | A1 |
20050251403 | Shuey | Nov 2005 | A1 |
20050270015 | Hemminger et al. | Dec 2005 | A1 |
20050278440 | Scoggins | Dec 2005 | A1 |
20060001415 | Fridholm et al. | Jan 2006 | A1 |
20060012935 | Murphy | Jan 2006 | A1 |
20060038548 | Shuey | Feb 2006 | A1 |
20060043961 | Loy | Mar 2006 | A1 |
20060044157 | Peters et al. | Mar 2006 | A1 |
20060044851 | Lancaster et al. | Mar 2006 | A1 |
20060055610 | Borisov et al. | Mar 2006 | A1 |
20060056493 | Cornwall et al. | Mar 2006 | A1 |
20060071810 | Scoggins et al. | Apr 2006 | A1 |
20060071812 | Mason et al. | Apr 2006 | A1 |
20060074556 | Hoiness et al. | Apr 2006 | A1 |
20060074601 | Hoiness et al. | Apr 2006 | A1 |
20060085147 | Cornwall et al. | Apr 2006 | A1 |
20060114121 | Cumeralto et al. | Jun 2006 | A1 |
20060126255 | Slater et al. | Jun 2006 | A1 |
20060145685 | Ramirez | Jul 2006 | A1 |
20060145890 | Junker et al. | Jul 2006 | A1 |
20060158177 | Ramirez | Jul 2006 | A1 |
20060158348 | Ramirez | Jul 2006 | A1 |
20060168804 | Loy et al. | Aug 2006 | A1 |
20060195229 | Bell et al. | Aug 2006 | A1 |
20060202858 | Holle et al. | Sep 2006 | A1 |
20060206433 | Scoggins | Sep 2006 | A1 |
20060217936 | Mason et al. | Sep 2006 | A1 |
20060224335 | Borleske et al. | Oct 2006 | A1 |
20060232433 | Holle et al. | Oct 2006 | A1 |
20060261973 | Junker et al. | Nov 2006 | A1 |
20070013549 | Schleich et al. | Jan 2007 | A1 |
20070063868 | Borleske | Mar 2007 | A1 |
20070091548 | Voisine | Apr 2007 | A1 |
20070096769 | Shuey | May 2007 | A1 |
20070115022 | Hemminger et al. | May 2007 | A1 |
20070124109 | Timko et al. | May 2007 | A1 |
20070124262 | Uy et al. | May 2007 | A1 |
20070147268 | Kelley et al. | Jun 2007 | A1 |
20070177319 | Hirst | Aug 2007 | A1 |
20070200729 | Borleske et al. | Aug 2007 | A1 |
20070205915 | Shuey et al. | Sep 2007 | A1 |
20070213880 | Ehlers | Sep 2007 | A1 |
20070222421 | Labuschagne | Sep 2007 | A1 |
20070229305 | Bonicatto et al. | Oct 2007 | A1 |
20070236362 | Brian et al. | Oct 2007 | A1 |
20070257813 | Vaswani et al. | Nov 2007 | A1 |
20070262768 | Holdsclaw | Nov 2007 | A1 |
20070271006 | Golden et al. | Nov 2007 | A1 |
20080001779 | Cahill-O'Brien et al. | Jan 2008 | A1 |
20080007247 | Gervais et al. | Jan 2008 | A1 |
20080007426 | Morand | Jan 2008 | A1 |
20080010212 | Moore et al. | Jan 2008 | A1 |
20080012550 | Shuey | Jan 2008 | A1 |
20080018492 | Ehrke et al. | Jan 2008 | A1 |
20080024115 | Makinson et al. | Jan 2008 | A1 |
20080039989 | Pollack et al. | Feb 2008 | A1 |
20080062055 | Cunningham | Mar 2008 | A1 |
20080068004 | Briese et al. | Mar 2008 | A1 |
20080068005 | Briese et al. | Mar 2008 | A1 |
20080068006 | Briese et al. | Mar 2008 | A1 |
20080077336 | Fernandes | Mar 2008 | A1 |
20080079741 | Martin et al. | Apr 2008 | A1 |
20080086475 | Martin | Apr 2008 | A1 |
20080097707 | Voisine | Apr 2008 | A1 |
20080111526 | Shuey | May 2008 | A1 |
20080116906 | Martin et al. | May 2008 | A1 |
20080129420 | Borisov et al. | Jun 2008 | A1 |
20080129537 | Osterloh et al. | Jun 2008 | A1 |
20080143491 | Deaver | Jun 2008 | A1 |
20080144548 | Shuey et al. | Jun 2008 | A1 |
20080180274 | Cumeralto et al. | Jul 2008 | A1 |
20080204272 | Ehrke et al. | Aug 2008 | A1 |
20080204953 | Shuey | Aug 2008 | A1 |
20080218164 | Sanderford | Sep 2008 | A1 |
20080219210 | Shuey et al. | Sep 2008 | A1 |
20080224891 | Ehrke et al. | Sep 2008 | A1 |
20080238714 | Ehrke et al. | Oct 2008 | A1 |
20080238716 | Ehrke et al. | Oct 2008 | A1 |
20080266133 | Martin | Oct 2008 | A1 |
20090003214 | Vaswani et al. | Jan 2009 | A1 |
20090003232 | Vaswani et al. | Jan 2009 | A1 |
20090003243 | Vaswani et al. | Jan 2009 | A1 |
20090003356 | Vaswani et al. | Jan 2009 | A1 |
20090015234 | Voisine et al. | Jan 2009 | A1 |
20090062970 | Forbes, Jr. et al. | Mar 2009 | A1 |
20090096211 | Stiesdal | Apr 2009 | A1 |
20090134996 | White, II et al. | May 2009 | A1 |
20090146839 | Reddy et al. | Jun 2009 | A1 |
20090153356 | Holt | Jun 2009 | A1 |
20090167558 | Borleske et al. | Jul 2009 | A1 |
20090187284 | Kreiss et al. | Jul 2009 | A1 |
20090224940 | Cornwall | Sep 2009 | A1 |
20090245270 | van Greunen et al. | Oct 2009 | A1 |
20090256364 | Gadau et al. | Oct 2009 | A1 |
20090262642 | van Greunen et al. | Oct 2009 | A1 |
20090265042 | Mollenkopf | Oct 2009 | A1 |
20090276170 | Bickel | Nov 2009 | A1 |
20090278708 | Kelley et al. | Nov 2009 | A1 |
20090281673 | Taft | Nov 2009 | A1 |
20090281679 | Taft | Nov 2009 | A1 |
20090284251 | Makinson et al. | Nov 2009 | A1 |
20090287428 | Holdsclaw et al. | Nov 2009 | A1 |
20090294260 | Makinson et al. | Dec 2009 | A1 |
20090295371 | Pontin et al. | Dec 2009 | A1 |
20090296431 | Borisov | Dec 2009 | A1 |
20090299660 | Winter | Dec 2009 | A1 |
20090299884 | Chandra | Dec 2009 | A1 |
20090300191 | Pace et al. | Dec 2009 | A1 |
20090309749 | Gilbert et al. | Dec 2009 | A1 |
20090309756 | Mason, Jr. et al. | Dec 2009 | A1 |
20090310511 | Vaswani et al. | Dec 2009 | A1 |
20090312881 | Venturini Cheim et al. | Dec 2009 | A1 |
20090319093 | Joos et al. | Dec 2009 | A1 |
20100007521 | Cornwall | Jan 2010 | A1 |
20100007522 | Morris | Jan 2010 | A1 |
20100010700 | Hoiness et al. | Jan 2010 | A1 |
20100013632 | Salewske et al. | Jan 2010 | A1 |
20100026517 | Cumeralto et al. | Feb 2010 | A1 |
20100036624 | Martin et al. | Feb 2010 | A1 |
20100036625 | Martin et al. | Feb 2010 | A1 |
20100040042 | van Greunen et al. | Feb 2010 | A1 |
20100045479 | Schamber et al. | Feb 2010 | A1 |
20100060259 | Vaswani et al. | Mar 2010 | A1 |
20100061350 | Flammer, III | Mar 2010 | A1 |
20100073193 | Flammer, III | Mar 2010 | A1 |
20100074176 | Flammer, III et al. | Mar 2010 | A1 |
20100074304 | Flammer, III | Mar 2010 | A1 |
20100094479 | Keefe | Apr 2010 | A1 |
20100103940 | van Greunen et al. | Apr 2010 | A1 |
20100109650 | Briese et al. | May 2010 | A1 |
20100110617 | Savage et al. | May 2010 | A1 |
20100117856 | Sonderegger | May 2010 | A1 |
20100128066 | Murata et al. | May 2010 | A1 |
20100134089 | Uram et al. | Jun 2010 | A1 |
20100150059 | Hughes et al. | Jun 2010 | A1 |
20100157838 | Vaswani et al. | Jun 2010 | A1 |
20100188254 | Johnson et al. | Jul 2010 | A1 |
20100188255 | Cornwall | Jul 2010 | A1 |
20100188256 | Cornwall et al. | Jul 2010 | A1 |
20100188257 | Johnson | Jul 2010 | A1 |
20100188258 | Cornwall et al. | Jul 2010 | A1 |
20100188259 | Johnson et al. | Jul 2010 | A1 |
20100188260 | Cornwall et al. | Jul 2010 | A1 |
20100188263 | Cornwall et al. | Jul 2010 | A1 |
20100188938 | Johnson et al. | Jul 2010 | A1 |
20100192001 | Cornwall et al. | Jul 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100286840 | Powell et al. | Nov 2010 | A1 |
20110025130 | Hadar et al. | Feb 2011 | A1 |
20110208366 | Taft | Aug 2011 | A1 |
20120041696 | Sanderford, Jr. et al. | Feb 2012 | A1 |
20120053751 | Borresen | Mar 2012 | A1 |
20120136638 | Deschamps et al. | May 2012 | A1 |
20120221265 | Arya | Aug 2012 | A1 |
20120249278 | Krok et al. | Oct 2012 | A1 |
20120265355 | Bernheim | Oct 2012 | A1 |
20130030579 | Milosevic et al. | Jan 2013 | A1 |
20130030591 | Powell et al. | Jan 2013 | A1 |
20140265574 | Tyler et al. | Sep 2014 | A1 |
20140277788 | Forbes, Jr. | Sep 2014 | A1 |
20140277796 | Peskin et al. | Sep 2014 | A1 |
20140277813 | Powell et al. | Sep 2014 | A1 |
20140277814 | Hall et al. | Sep 2014 | A1 |
20150086325 | Forbes, Jr. | Mar 2015 | A1 |
20150094874 | Hall et al. | Apr 2015 | A1 |
20150120078 | Peskin et al. | Apr 2015 | A1 |
20150137600 | Tyler et al. | May 2015 | A1 |
20160164290 | Hall | Jun 2016 | A1 |
20160204609 | Tyler | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
102055201 | Jun 2011 | CN |
9685 | Feb 2008 | EA |
0020310 | Dec 1980 | EP |
S57148533 | Sep 1982 | JP |
63-299722 | Dec 1988 | JP |
63-299722 | Dec 1988 | JP |
H10-164766 | Jun 1998 | JP |
2002-247780 | Aug 2002 | JP |
2004-096906 | Mar 2004 | JP |
2006-208047 | Aug 2006 | JP |
2009-33811 | Feb 2009 | JP |
2009-33811 | Feb 2009 | JP |
2009-65817 | Mar 2009 | JP |
2009-85817 | Mar 2009 | JP |
2066084 | Aug 1996 | RU |
2200364 | Mar 2003 | RU |
14733008 | Apr 1989 | SU |
WO-199826489 | Jun 1998 | WO |
WO-2008003033 | Jan 2008 | WO |
WO-2008144860 | Dec 2008 | WO |
2010093345 | Aug 2010 | WO |
WO-2010129691 | Nov 2010 | WO |
WO-2014152408 | Sep 2014 | WO |
Entry |
---|
ANSI C84, Jan. 2006; American National Standard For Electric Power Systems and Equipment Voltage Ratings (60 Hertz); National Electrical Manufacture Association, Approved Dec. 6, 2006, American National Standards Institute, Inc., pp. 1-23. |
Belvin et al., “Voltage Reduction Results on a 24-kV Circuit.” 2012 IEEE PES Transmission and Distribution Conference and Exposition, (T&D 2012) Orlando, Florida, USA, pp. 1-4. |
Bryon Flynn, “Key Smart Grid Applications”, Protection & Control Journal, Jul. 2009, pp. 29-34. |
Dunnett et al., “Development of Closed Loop Voltage Control Simulator for Medium Voltage Distribution,” Power Engineering Conference, 2009, AUPEC 2009, Australasian Universities, pp. 1-5. |
Extended European Search Report dated Dec. 13, 2017 for European Application No. 14767612.6. |
Fletcher, R.H. et al., “Integrating Engineering and Economic Analysis of Conservation Voltage Reduction,” Power Engineering Society Summer Meeting, 2002 IEEE (vol. 2), pp. 725-730. |
Flynn, Bryon, “Key Smart Grid Applications”, Protection & Control Journal, Jul. 2009, pp. 29-34. |
International Search Report and Written Opinion of the International Searching Authority dated Aug. 7, 2014 on related PCT Appln. PCT/US2014/027310. |
International Search Report and Written Opinion of the International Searching Authority dated Dec. 20, 2010 on related PCT Appln. PCT/US2010/033751. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 24, 2014 on related PCT Appln. PCT/US2014/027332. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 29, 2014 on related PCT Appln. PCT/US2014/027299. |
International Search Report and Written Opinion of the International Searching Authority dated Nov. 3, 2016 on related PCT Appln. PCT/US2016/048206. |
International Search Report and Written Opinion of the International Searching Authority dated Sep. 5, 2014 on related PCT Appln. PCT/US2014/27361. |
Kennedy, P.E. et al., “Conservation Voltage Reduction (CVR) at Snohmish County PUD,” Transactions on Power Systems, vol. 6, No. 3, Aug. 1991, pp. 986-998. |
LaPlace, et al. Realizing the Smart Grid of the Future through AMI technology, 14 pages, Jun. 1, 2009. |
Paseraba, “Secondary Voltage-Var Controls Applied to Static Compensators (STATCOMs) for Fast Voltage Control and Long Term Var Management,” 2002 IEEE Power Engineering Society Summer Meeting, Jul. 25, 2002, Chicago, IL, vol. 2, pp. 753-761 <DOI: 10.1109/PESS.2002.1043415>. |
Peskin et al., “Conservation Voltage Reduction with Feedback from Advanced Metering Infrastructure.” 2012 IEEE PES Transmission and Distribution Conference and Exposition, Orlando, Florida (T&D 2012), Nos. 7-10, pp. 1-85, May 7, 2012. |
Williams, B.R., “Distribution Capacitor Automation Provides Intergrated Control of Customer Voltage Levels and Distribution Reactive Power Flow,” Southern California Edison Company, Power Industry Computer Application Conference, 1995, Conference Proceedings, pp. 215-220. |
Willis, H. L. “Power Distribution Planning Reference Book,” Second Edition, Revised and Expanded, Chapter 10, pp. 368-383 and 387, 2004. |
Wilson, Thomas L “Measurement and Verificaiton of Distribution Voltage Optimization Results for the IEEE Power & Energy Society”, 2010, pp. 1-9. |
Number | Date | Country | |
---|---|---|---|
20200004280 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
61794623 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15593378 | May 2017 | US |
Child | 16502738 | US | |
Parent | 14193872 | Feb 2014 | US |
Child | 15593378 | US |