Electric refuse vehicles (i.e., battery-powered refuse vehicles) include one or more energy storage elements (e.g., batteries) that supply energy to an electric motor. The electric motor supplies rotational power to the wheels of the refuse vehicle to drive the refuse vehicle. The energy storage elements can also be used to supply energy to vehicle subsystems, like the lift system or the compactor.
One exemplary embodiment relates to a refuse vehicle. The refuse vehicle includes a chassis, a battery, a vehicle body, an electric power take-off system, and a lifting system. The chassis supports a plurality of wheels. The battery is supported by the chassis and is configured to provide electrical power to a first motor. Rotation of the first motor selectively drives at least one of the plurality of wheels. The vehicle body is supported by the chassis and defines a receptacle for receiving and storing refuse. The electric power take-off system is coupled to the vehicle body and includes a second motor configured to convert electrical power received from the battery into hydraulic power (e.g., using a hydraulic pump). The electric power take-off system is positioned within the receptacle. The lifting system is coupled to the vehicle body and is movable relative to the receptacle using hydraulic power from the electric power take-off system.
Another exemplary embodiment relates to a refuse vehicle. The refuse vehicle includes a chassis, a battery, a vehicle body, an electric power take-off system, and a lifting system. The chassis supports a plurality of wheels. The battery is supported by the chassis and is configured to provide electrical power to a first motor. Rotation of the first motor selectively drives at least one of the plurality of wheels. The vehicle body is supported by the chassis, and includes a cab and a receptacle for receiving and storing refuse. The vehicle body further includes a canopy that extends away from the receptacle, toward and over a portion of the cab. The canopy defines a cavity positioned above the cab. The electric power take-off system is coupled to the vehicle body and includes a second motor and a hydraulic pump that are configured to convert electrical power received from the battery into hydraulic power. The electric power take-off system is positioned within the cavity beneath the canopy. The lifting system is coupled to the vehicle body and is movable relative to the receptacle using hydraulic power from the electric power take-off system.
Another exemplary embodiment relates to a refuse vehicle. The refuse vehicle includes a chassis, a battery, a vehicle body, an electric power take-off system, and a lifting system. The chassis supports a plurality of wheels. The battery is supported by the chassis and is configured to provide electrical power to a first motor. Rotation of the first motor selectively drives at least one of the plurality of wheels. The vehicle body is supported by the chassis and includes a cab and a receptacle for receiving and storing refuse. The electric power take-off system is coupled to the vehicle body and includes a second motor configured to drive a hydraulic pump to convert electrical power received from the battery into hydraulic power. The electric power take-off system is positioned within a cabinet housing formed alongside the vehicle body. The lifting system is coupled to the vehicle body and is movable relative to the receptacle using hydraulic power from the electric power take-off system.
The invention is capable of other embodiments and of being carried out in various ways. Alternative exemplary embodiments relate to other features and combinations of features as may be recited herein.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
Referring to the FIGURES generally, the various exemplary embodiments disclosed herein relate to electric refuse vehicles. Electric refuse vehicles, or E-refuse vehicles, include an onboard energy storage device, like a battery, that provides power to a motor that produces rotational power to drive the vehicle. The energy storage device, which is commonly a battery, can be used to provide power to different subsystems on the E-refuse vehicle. The energy storage device is also configured to provide hydraulic power to different subsystems on the E-refuse vehicle through an electric power take-off (E-PTO) system. The E-PTO system receives electrical power from the energy storage device and provides the electrical power to an electric motor. The electric motor drives a hydraulic pump that provides pressurized hydraulic fluid to different vehicle subsystems, including the compactor and the lifting system.
The E-PTO system is positioned on the refuse vehicle so that a user can readily access the system on the refuse vehicle in several different operational conditions. For example, the E-PTO system is packaged so that a user can access the E-PTO system regardless of the fill state of the on-board receptacle of the refuse vehicle. The packaging of the E-PTO allows direct access to critical components of the vehicle. The packaging is externally washable and sealed against refuse and environmental intrusion or waste collection. Additionally, the E-PTO system is agnostic to the chassis, and can be readily incorporated into electric refuse vehicles, hybrid refuse vehicles, diesel-powered refuse vehicles, or other chassis styles. The E-PTO system packaging is further designed with a thermal management system that is contained within the body of the refuse vehicle to regulate and cool the E-PTO system.
Referring to
According to an exemplary embodiment, the refuse truck 10 is configured to transport refuse from various waste receptacles within a municipality to a storage or processing facility (e.g., a landfill, an incineration facility, a recycling facility, etc.). As shown in
Referring again to the exemplary embodiment shown in
Referring to the exemplary embodiment shown in
Referring to
Still referring to
The refuse truck 10 can be considered a hybrid refuse vehicle as it includes both electric and hydraulic power systems. As depicted in
With continued reference to
The disconnect 200 further allows an all-electric vehicle chassis to be retrofit with hydraulic power systems, which can be advantageous for a variety of reasons, as hydraulic power systems may be more responsive and durable than fully electric systems. In some examples, the E-PTO system 100 includes a dedicated secondary battery 108 that is configured to supply electrical power to the E-PTO system 100 if the disconnect 200 is tripped, such that the secondary vehicle systems can remain optional even when the E-PTO system 100 is not receiving electrical power from the batteries 23. In some examples, the E-PTO system 100 operates independently of the battery 23, and includes its own dedicated secondary battery 108 that supplies DC electrical power to the inverter 110, which converts the DC electrical power to AC electrical power that can then be supplied to the electric motor 104. In still further embodiments, the dedicated secondary battery 108 is directly coupled to the electric motor 104 and supplies DC electrical power directly to the electric motor 104. With the secondary battery 108 present within the E-PTO system 100, the E-PTO system can be agnostic to the chassis type, and can be incorporated into all-electric, hybrid, diesel, CNG, or other suitable refuse vehicle chassis types.
The E-PTO system 100 and energy storage devices (e.g., batteries 23, 108) can be positioned about the refuse truck 10 in various different places to provide external accessibility to a user regardless of a vehicle state (e.g., filled with refuse, empty, etc.) For example, and with reference to
The canopy 62 is defined by two generally triangular side walls 66 and an arcuate roof 68 extending between the two side walls 66. The side walls 66 and roof 68 together define a hollow cavity 70 beneath the canopy 62 that can receive the E-PTO system 100 or components of the E-PTO system 100 (e.g., the secondary battery 108, electric motor 104 and hydraulic pump 102, etc.). The roof 68 and side walls 66 collectively protect the E-PTO system 100 from the external environment while also providing open air access for cooling the system. In some examples, the canopy 62 further includes a protective shield 72 extending forward from the roof 68 and the side walls 66. The protective shield 72 can be hingedly coupled to the side walls 66 and extends tangentially with the roof 68 to increase the overhang over the cab 18 of the refuse truck to further defend the E-PTO system 100 from debris or external elements during operation of the refuse truck 10. The protective shield 72 can rotate upward and rearward about the hinges on the side walls 66 to selectively provide access into the hollow cavity 70 so that a worker can access and perform maintenance on the E-PTO system 100, for example. The canopy 62 is designed so that even when the protective shield 72 is deployed (e.g., lowered, as shown in
The side walls 66 and roof 68 are mounted to and extend away from a front panel of the on-board receptacle 16. In some examples, the side walls 66 and roof 68 are removably coupled (e.g., bolted to the on-board receptacle 16). Alternatively, the side walls 66 can be hingedly mounted to the on-board receptacle 16, which allows the side walls 66 and the roof 68 (e.g., the entire canopy 62) to rotate upward and rearward relative to the on-board receptacle to allow increased access to the area beneath the canopy 62. By positioning components of the E-PTO system 100 within the cavity 70 beneath the canopy 62, direct access to these components is maintained regardless of status of the vehicle.
With reference to
The location of the housing 60 has a minimal impact on the capacity of the on-board receptacle 16. As depicted in
With specific reference to
In some examples, the housing 60 can be accessed through the hopper 52 of the refuse truck 10. The housing 60 can be accessed, in part, through a second passage formed through the front wall of the collection chamber 28. As depicted in
One or more components of the E-PTO system 100 can also be positioned within a dedicated housing 64 alongside the vehicle body 14, as depicted in
Each of the housings 60, 64 and/or the canopy 62 can include thermal management systems 202 that are configured to supply cooling air to the components of the E-PTO system 100 received within the housings 60, 64 or beneath the canopy 62. In some examples, fans are included within the housings 60, 64 to drive cooling air over the components of the E-PTO. In other examples, a heat exchanger can be provided to the housing to remove generated heat from within the housings 60, 64. The housings 60, 64 can be provided with vents to permit ambient air to pass through into the housings 60, 64 as well. In some examples, the thermal management system 202 includes a radiator.
Using the previously described systems and methods, a refuse truck can be effectively outfitted with an E-PTO system that can convert electrical power to hydraulic power to provide pressurized hydraulic fluid to various subsystems on the vehicle. The E-PTO system can be packaged and retrofit onto existing refuse trucks and can be incorporated into various different vehicle chassis types. The E-PTO system can be powered by an auxiliary or self-contained power source, or can draw power from the main battery of the vehicle. By integrating the E-PTO system and housings into the structure of the body assembly (e.g., within or along the on-board receptacle 16, above the cab 18, etc.), the E-PTO system occupies otherwise unused or “dead” space so that the capacity of the refuse truck is not compromised. The E-PTO is also protected from external contaminants (e.g., refuse, precipitation, etc.) that might otherwise cause damage to the E-PTO. The different E-PTO packaging options permit access to the E-PTO regardless of the fill level of the on-board receptacle 16, which allows maintenance activities to be performed as desired.
Although the description of the E-PTO system and disconnect have been described within the context of a front end loading refuse truck, the same or similar systems can also be included in both side loading and rear end loading refuse trucks without significant modification. Accordingly, the disclosure should be considered to encompass the E-PTO system and packaging incorporated into any type or variation of refuse vehicle. Additionally, the E-PTO system and packaging can be implemented into additional locations within the vehicle. For example, components of the E-PTO system or the batteries can also be positioned within the vehicle fenders, behind the cab of the refuse truck, or mounted to the chassis.
Although this description may discuss a specific order of method steps, the order of the steps may differ from what is outlined. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.
As utilized herein, the terms “approximately”, “about”, “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The terms “coupled,” “connected,” and the like, as used herein, mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent, etc.) or moveable (e.g., removable, releasable, etc.). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” “between,” etc.) are merely used to describe the orientation of various elements in the figures. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
It is important to note that the construction and arrangement of the refuse truck as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements. It should be noted that the elements and/or assemblies of the components described herein may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from scope of the present disclosure or from the spirit of the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 63/084,386, filed Sep. 28, 2020, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5897123 | Cherney et al. | Apr 1999 | A |
5919027 | Christenson | Jul 1999 | A |
5934858 | Christenson | Aug 1999 | A |
5934867 | Christenson | Aug 1999 | A |
5938394 | Christenson | Aug 1999 | A |
5951235 | Young et al. | Sep 1999 | A |
5967731 | Brandt | Oct 1999 | A |
5984609 | Bartlett | Nov 1999 | A |
6033176 | Bartlett | Mar 2000 | A |
6062803 | Christenson | May 2000 | A |
6089813 | McNeilus et al. | Jul 2000 | A |
6105984 | Schmitz et al. | Aug 2000 | A |
6120235 | Humphries et al. | Sep 2000 | A |
6123500 | McNeilus et al. | Sep 2000 | A |
6189901 | Smith | Feb 2001 | B1 |
6210094 | McNeilus et al. | Apr 2001 | B1 |
6213706 | Christenson | Apr 2001 | B1 |
6224318 | McNeilus et al. | May 2001 | B1 |
6315515 | Young et al. | Nov 2001 | B1 |
6336783 | Young et al. | Jan 2002 | B1 |
6350098 | Christenson et al. | Feb 2002 | B1 |
6447239 | Young et al. | Sep 2002 | B2 |
6474928 | Christenson | Nov 2002 | B1 |
6516914 | Andersen et al. | Feb 2003 | B1 |
6565305 | Schrafel | May 2003 | B2 |
6757597 | Yakes et al. | Jun 2004 | B2 |
6882917 | Pillar et al. | Apr 2005 | B2 |
6885920 | Yakes et al. | Apr 2005 | B2 |
7070382 | Pruteanu et al. | Jul 2006 | B2 |
7164977 | Yakes et al. | Jan 2007 | B2 |
7277782 | Yakes et al. | Oct 2007 | B2 |
7284943 | Pruteanu et al. | Oct 2007 | B2 |
7302320 | Nasr et al. | Nov 2007 | B2 |
7357203 | Morrow et al. | Apr 2008 | B2 |
7379797 | Nasr et al. | May 2008 | B2 |
7392122 | Pillar et al. | Jun 2008 | B2 |
7439711 | Bolton | Oct 2008 | B2 |
7448460 | Morrow | Nov 2008 | B2 |
7451028 | Pillar et al. | Nov 2008 | B2 |
7520354 | Morrow et al. | Apr 2009 | B2 |
7521814 | Nasr | Apr 2009 | B2 |
7556468 | Grata | Jul 2009 | B2 |
7559735 | Pruteanu et al. | Jul 2009 | B2 |
7689332 | Yakes et al. | Mar 2010 | B2 |
7711460 | Yakes et al. | May 2010 | B2 |
7756621 | Pillar et al. | Jul 2010 | B2 |
7848857 | Nasr et al. | Dec 2010 | B2 |
7878750 | Zhou et al. | Feb 2011 | B2 |
7931103 | Morrow et al. | Apr 2011 | B2 |
7937194 | Nasr et al. | May 2011 | B2 |
8000850 | Nasr et al. | Aug 2011 | B2 |
8139109 | Schmiedel et al. | Mar 2012 | B2 |
8182194 | Pruteanu et al. | May 2012 | B2 |
8215892 | Calliari | Jul 2012 | B2 |
8333390 | Linsmeier et al. | Dec 2012 | B2 |
8337352 | Morrow et al. | Dec 2012 | B2 |
8360706 | Addleman et al. | Jan 2013 | B2 |
8540475 | Kuriakose et al. | Sep 2013 | B2 |
8561735 | Morrow et al. | Oct 2013 | B2 |
8807613 | Howell et al. | Aug 2014 | B2 |
8864613 | Morrow et al. | Oct 2014 | B2 |
8947531 | Fischer et al. | Feb 2015 | B2 |
9008913 | Sears et al. | Apr 2015 | B1 |
9045014 | Verhoff et al. | Jun 2015 | B1 |
9114804 | Shukla et al. | Aug 2015 | B1 |
9132736 | Oshkosh | Sep 2015 | B1 |
9174686 | Oshkosh | Nov 2015 | B1 |
9216856 | Howell et al. | Dec 2015 | B2 |
9315210 | Sears et al. | Apr 2016 | B2 |
9376102 | Shukla et al. | Jun 2016 | B1 |
9387985 | Gillmore et al. | Jul 2016 | B2 |
9420203 | Broggi et al. | Aug 2016 | B2 |
9428042 | Morrow et al. | Aug 2016 | B2 |
9452750 | Shukla et al. | Sep 2016 | B2 |
9493921 | Amin et al. | Nov 2016 | B2 |
9656640 | Verhoff et al. | May 2017 | B1 |
9707869 | Messina et al. | Jul 2017 | B1 |
9821789 | Shukla et al. | Nov 2017 | B2 |
9880581 | Kuriakose et al. | Jan 2018 | B2 |
10029556 | Morrow et al. | Jul 2018 | B2 |
D843281 | Gander et al. | Mar 2019 | S |
10315643 | Shukla et al. | Jun 2019 | B2 |
10392000 | Shukla et al. | Aug 2019 | B2 |
10414067 | Datema et al. | Sep 2019 | B2 |
10421350 | Morrow | Sep 2019 | B2 |
10434995 | Verhoff et al. | Oct 2019 | B2 |
10457134 | Morrow et al. | Oct 2019 | B2 |
D869332 | Gander et al. | Dec 2019 | S |
D871283 | Gander et al. | Dec 2019 | S |
10544556 | Amin et al. | Jan 2020 | B2 |
D888629 | Gander et al. | Jun 2020 | S |
10800605 | Rocholl et al. | Oct 2020 | B2 |
10843379 | Rocholl et al. | Nov 2020 | B2 |
10843549 | Morrow et al. | Nov 2020 | B2 |
D905713 | Linsmeier et al. | Dec 2020 | S |
10859167 | Jax et al. | Dec 2020 | B2 |
D907544 | Wall et al. | Jan 2021 | S |
10901409 | Datema et al. | Jan 2021 | B2 |
D909934 | Gander et al. | Feb 2021 | S |
10940610 | Clifton et al. | Mar 2021 | B2 |
10987829 | Datema et al. | Apr 2021 | B2 |
10997802 | Koga et al. | May 2021 | B2 |
11001135 | Yakes et al. | May 2021 | B2 |
11001440 | Rocholl et al. | May 2021 | B2 |
11007863 | Yakes et al. | May 2021 | B2 |
11021078 | Rocholl et al. | Jun 2021 | B2 |
11042750 | Wildgrube et al. | Jun 2021 | B2 |
11046329 | Clifton et al. | Jun 2021 | B2 |
11052899 | Shukla et al. | Jul 2021 | B2 |
11059436 | Wildgrube et al. | Jul 2021 | B2 |
20020159870 | Pruteanu et al. | Oct 2002 | A1 |
20030231944 | Weller et al. | Dec 2003 | A1 |
20040071537 | Pruteanu et al. | Apr 2004 | A1 |
20040156706 | Weller et al. | Aug 2004 | A1 |
20050113988 | Nasr et al. | May 2005 | A1 |
20050113996 | Pillar et al. | May 2005 | A1 |
20050119806 | Nasr et al. | Jun 2005 | A1 |
20060045700 | Siebers et al. | Mar 2006 | A1 |
20060065451 | Morrow et al. | Mar 2006 | A1 |
20060066109 | Nasr | Mar 2006 | A1 |
20060106521 | Nasr et al. | May 2006 | A1 |
20070088469 | Schmiedel et al. | Apr 2007 | A1 |
20070138817 | Calliari et al. | Jun 2007 | A1 |
20070154295 | Kuriakose | Jul 2007 | A1 |
20080038106 | Spain | Feb 2008 | A1 |
20080059014 | Nasr et al. | Mar 2008 | A1 |
20080071438 | Nasr et al. | Mar 2008 | A1 |
20080150350 | Morrow et al. | Jun 2008 | A1 |
20080237285 | Calliari | Oct 2008 | A1 |
20090194347 | Morrow et al. | Aug 2009 | A1 |
20100116569 | Morrow et al. | May 2010 | A1 |
20100166531 | Bauer et al. | Jul 2010 | A1 |
20100301668 | Yakes et al. | Dec 2010 | A1 |
20110312459 | Morrow et al. | Dec 2011 | A1 |
20120282077 | Alberts et al. | Nov 2012 | A1 |
20130196806 | Morrow et al. | Aug 2013 | A1 |
20150283894 | Morrow et al. | Oct 2015 | A1 |
20160001765 | Shukla et al. | Jan 2016 | A1 |
20160297417 | Shukla et al. | Oct 2016 | A1 |
20160361987 | Morrow et al. | Dec 2016 | A1 |
20170008507 | Shukla et al. | Jan 2017 | A1 |
20170121108 | Davis et al. | May 2017 | A1 |
20170225888 | Betz et al. | Aug 2017 | A1 |
20170341860 | Dodds et al. | Nov 2017 | A1 |
20180072303 | Shukla et al. | Mar 2018 | A1 |
20180129241 | Kuriakose et al. | May 2018 | A1 |
20180265289 | Davis et al. | Sep 2018 | A1 |
20180345783 | Morrow et al. | Dec 2018 | A1 |
20190039407 | Smith | Feb 2019 | A1 |
20190071291 | Puszkiewicz et al. | Mar 2019 | A1 |
20190121353 | Datema et al. | Apr 2019 | A1 |
20190161272 | Betz et al. | May 2019 | A1 |
20190185077 | Smith et al. | Jun 2019 | A1 |
20190193934 | Rocholl et al. | Jun 2019 | A1 |
20190291711 | Shukla et al. | Sep 2019 | A1 |
20190322321 | Schwartz et al. | Oct 2019 | A1 |
20190344475 | Datema et al. | Nov 2019 | A1 |
20190351883 | Verhoff et al. | Nov 2019 | A1 |
20190360600 | Jax et al. | Nov 2019 | A1 |
20190381990 | Shukla et al. | Dec 2019 | A1 |
20200031641 | Puszkiewicz et al. | Jan 2020 | A1 |
20200039341 | Morrow et al. | Feb 2020 | A1 |
20200102145 | Nelson et al. | Apr 2020 | A1 |
20200230841 | Datema et al. | Jul 2020 | A1 |
20200230842 | Datema et al. | Jul 2020 | A1 |
20200262328 | Nelson et al. | Aug 2020 | A1 |
20200262366 | Wildgrube et al. | Aug 2020 | A1 |
20200265656 | Koga et al. | Aug 2020 | A1 |
20200316816 | Messina et al. | Oct 2020 | A1 |
20200317083 | Messina et al. | Oct 2020 | A1 |
20200346547 | Rocholl et al. | Nov 2020 | A1 |
20200346556 | Rocholl et al. | Nov 2020 | A1 |
20200346557 | Rocholl et al. | Nov 2020 | A1 |
20200346657 | Clifton et al. | Nov 2020 | A1 |
20200346854 | Rocholl et al. | Nov 2020 | A1 |
20200346855 | Rocholl et al. | Nov 2020 | A1 |
20200346856 | Rocholl et al. | Nov 2020 | A1 |
20200346857 | Rocholl et al. | Nov 2020 | A1 |
20200346858 | Buege et al. | Nov 2020 | A1 |
20200346859 | Buege et al. | Nov 2020 | A1 |
20200346860 | Buege et al. | Nov 2020 | A1 |
20200346861 | Rocholl et al. | Nov 2020 | A1 |
20200346862 | Rocholl et al. | Nov 2020 | A1 |
20200347659 | Rocholl et al. | Nov 2020 | A1 |
20200347661 | Rocholl et al. | Nov 2020 | A1 |
20200347857 | Clifton et al. | Nov 2020 | A1 |
20200348681 | Clifton et al. | Nov 2020 | A1 |
20200348764 | Clifton et al. | Nov 2020 | A1 |
20200398670 | Rocholl et al. | Dec 2020 | A1 |
20200398695 | Rocholl et al. | Dec 2020 | A1 |
20200398697 | Rocholl et al. | Dec 2020 | A1 |
20200398772 | Wildgrube et al. | Dec 2020 | A1 |
20200399057 | Rocholl et al. | Dec 2020 | A1 |
20200399058 | Rocholl et al. | Dec 2020 | A1 |
20200402325 | Koga et al. | Dec 2020 | A1 |
20210002112 | Puszkiewicz et al. | Jan 2021 | A1 |
20210031611 | Yakes et al. | Feb 2021 | A1 |
20210031612 | Yakes et al. | Feb 2021 | A1 |
20210031649 | Messina et al. | Feb 2021 | A1 |
20210054942 | Jax et al. | Feb 2021 | A1 |
20210069934 | Rocholl et al. | Mar 2021 | A1 |
20210086991 | Betz et al. | Mar 2021 | A1 |
20210088036 | Schubart et al. | Mar 2021 | A1 |
20210107361 | Linsmeier et al. | Apr 2021 | A1 |
20210124347 | Datema et al. | Apr 2021 | A1 |
20210143663 | Bolton | May 2021 | A1 |
20210162630 | Clifton et al. | Jun 2021 | A1 |
20210188076 | Morrow et al. | Jun 2021 | A1 |
20210213642 | Datema et al. | Jul 2021 | A1 |
20210221216 | Yakes et al. | Jul 2021 | A1 |
20210225095 | Koga et al. | Jul 2021 | A1 |
20210229320 | Datema et al. | Jul 2021 | A1 |
20210229755 | Schwartz et al. | Jul 2021 | A1 |
20210229908 | Rocholl et al. | Jul 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
63084386 | Sep 2020 | US |