The present invention relates to an electric power tool, such as a drill driver, a disc saw or the like, which has a speed changing function performed by a speed reduction mechanism.
In general, there are known electric power tools that have a speed changing function with a view to enhance work efficiency (see, e.g., Japanese Patent Laid-open Publication No. 63-101545).
One example of the electric power tools is shown in
As shown in
In case the work load varies in the midst of work, the operation lever 105 may be operated during the work to change the gear reduction ratio. This may sometimes cause trouble to the electric power tool. More specifically, if the gear reduction ratio is changed with the operation lever 105 during the course of work, namely if the gear 102a of the speed reducer unit 102 is shifted when in rotation, the mutually engageable gears may make contact with each other during their rotation and may be worn or damaged. This may be a cause of trouble in the electric power tool. The conventional solution to this problem is to increase the strength of gears, thereby preventing occurrence of trouble. In this case, however, the gears need to be made of high strength metal or formed into a big size, which leads to a problem of high cost and increased weight.
In view of the above, the present invention provides an electric power tool capable of making it impossible to perform a speed changing operation until the pushing operation of an operation lever is detected, preventing itself from suffering from trouble which would otherwise occur due to the wear or damage of gears of a speed reducer unit caused by the speed changing operation performed during the course of work, enjoying enhanced reliability, reducing the strength required in the gears and assuring reduced cost and weight.
The present invention further provides an electric power tool capable of making it possible to easily construct a slide restraint unit through the use of an operation lever and a housing, assuring increased operability, reliably restraining movement of the operation lever prior to a speed changing operation, preventing an erroneous operation which would otherwise occur when the operation lever is inadvertently touched, increasing the detection accuracy without having to use sensors in plural numbers, preventing wear of a detection member while prolonging the life span thereof, and preventing damage of precision electronic parts such as a sensor or a switch arranged below the operation lever even when a falling impact force or the like is applied to the operation lever.
In accordance with an aspect of the present invention, there is provided an electric power tool including: a motor as a driving power source for generating rotational power; a speed reducer unit arranged to deliver the rotational power of the motor and provided with two or more gears; a driving unit arranged to deliver the rotational power from the speed reducer unit to a tip end tool; a housing arranged to accommodate the motor, the speed reducer unit and the driving unit therein and provided with a handle portion; and a speed changing unit for changing a gear reduction ratio of the speed reducer unit, the speed changing unit arranged in such a position as to be operable outside the housing, wherein the speed changing unit comprises an operation lever slidingly operable in a speed changing direction when pushed, an operation detector unit for detecting the operation lever to control electric power supplied to the motor, a shift unit for changing the gear reduction ratio of the speed reducer unit in response to sliding movement of the operation lever, and a slide restraint unit for restraining the sliding operation of the operation lever until the operation detector unit detects the operation lever.
With this configuration, the slide restraint unit restrains the sliding operation of the operation lever and makes it impossible to perform a speed changing operation until the pushing operation of the operation lever is detected by the operation detector unit and until the electric power supplied to the motor is controlled to obtain the revolution number corresponding to the gear reduction ratio. This makes it possible to prevent the electric power tool from suffering from trouble which would otherwise occur due to the wear or damage of gears of the speed reducer unit caused by the speed changing operation performed during the course of work.
The slide restraint unit may include a projection portion provided in one of mutually facing surfaces of the operation lever and the housing and a guide portion provided in the other surface, the projection portion and the guide portion being configured in such a manner as to restrain sliding movement of the operation lever in the speed changing direction when the push lever is in a non-pushed position but permit the sliding movement of the operation lever in the speed changing direction when the push lever is in a pushed position. In this case, it is possible to easily construct the slide restraint unit using the operation lever and the housing.
The guide portion may include a slide operation groove extending in the speed changing direction and a pair of push operation grooves extending in a pushing direction of the operation lever from the opposite ends of the slide operation groove, the slide operation groove and the push operation grooves being continuously formed to have a substantially U-like shape. In this case, it is possible to simplify the configuration of the guide portion using the substantially U-shaped groove.
The push operation grooves may be inclined at an obtuse angle with respect to the slide operation groove. In this case, the operation lever moves, when pushed, in the direction inclined at an obtuse angle with respect to the slide operation groove and not in the direction perpendicular to the slide operation groove. Therefore, the transition from the pushing operation to the sliding operation occurs smoothly, thereby enhancing the operability of the operation lever.
The speed changing unit may further includes a resilient member for biasing the projection portion against the guide portion in a direction to restrain the movement of the operation lever and a restraint releasing unit for moving the projection portion to permit the movement of the operation lever when the operation lever is pushed. In this case, use of the resilient body and the restraint releasing unit makes it possible to bring the operation lever from a movement-restrained state into a movement-permitted state in response to the pushing operation of the operation lever. This ensures that the transition from the pushing operation to the speed-changing sliding operation occurs in a smoother manner.
The operation detector unit may be designed to detect the operation lever when the operation lever is in a generally middle position between a non-pushed position and a pushed position. In this case, if the operation lever is not pushed down by a predetermined amount, the operation detector unit fails to detect the pushing operation of the operation lever. This makes it possible to prevent an erroneous operation of the electric power tool which would otherwise occur when the operation lever is touched inadvertently.
The operation lever may include an interrupter plate having a predetermined length in the speed changing direction, the operation detector unit including a sensor for optically detecting the interrupter plate when the operation lever is pushed. In this case, a single interrupter plate is sufficient to cover a plurality of pushing positions of the operation lever, because the interrupter plate extends in the speed changing direction. This eliminates the need to use sensors in plural numbers, while assuring reduced cost and weight. Use of the non-contact sensor assists in preventing wear of the interrupter plate and prolonging the life span thereof.
The operation lever preferably has an operation surface depressed inwards from an outer surface of the housing. In this case, even if a falling impact force or the like is applied to the operation lever, the housing can first receive the impact force. This is because the operation surface of the operation lever is depressed. Therefore, it is possible to prevent damage of precision electronic parts such as a sensor or a switch arranged below the operation lever.
With the electric power tool of the present invention, the slide restraint unit restrains the sliding operation of the operation lever and makes it impossible to perform a speed changing operation until the pushing operation of the operation lever is detected to control the electric power supplied to the motor. This makes it possible to prevent the electric power tool from suffering from trouble which would otherwise occur due to the wear or damage of gears of the speed reducer unit caused by the speed changing operation performed during the course of work. Furthermore, it is possible to assure enhanced reliability and to reduce the strength required in the gears. Therefore, it becomes possible, for example, to change the material of gears from metal to resin, thereby reducing the cost and weight of the electric power tool.
The objects and features of the present invention will become apparent from the following description of preferred embodiments, given in conjunction with the accompanying drawings, in which:
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings which form a part hereof.
Referring to
The speed changing mechanism 3 is a slide-type operation switch 50 and is divided into an operation lever 4 (an upper layer portion) slidable in a speed changing direction R when in a pushed state and a lower layer portion 15a as shown in
The operation lever 4 is operated forwards and backwards as shown in
An interrupter plate 6a serving as a detection plate is installed to protrude downwards from the lower end of the push lever portion 4a. The interrupter plate 6a extends a predetermined length along the speed changing direction R and has, e.g., opening portions and non-opening portions (not shown) alternately arranged along the longitudinal direction thereof (i.e., the speed changing direction R). In the present embodiment, the operation surfaces 4c of the operation lever 4 are depressed a predetermined depth W (see
Below the lower layer portion 15a of the operation lever 4, a sensor stand 16 for holding a photo interrupter 6b of the operation detector unit 6 is attached to the switch base 15. The operation detector unit 6 detects the interrupter plate 6a moved down together with the push lever portion 4a when the latter is pushed. Using the detection results, the operation detector unit 6 controls the motor 5 in the below-mentioned manner so that the motor 5 can rotate at a revolution number corresponding to the gear reduction ratio.
The slide restraint unit 7 restrains the operation lever 4 from performing the speed changing operation until the pushing operation of the push lever portion 4a is detected by the photo interrupter 6b. As shown in
Next, description will be made on the operation of the electric power tool.
In order to change the speed of the electric power tool 1, a user slides the operation lever 4 while pushing the same with a finger. In this regard,
If the push lever portion 4a of the operation lever 4 is pushed as shown in
With the configuration stated above, the slide restraint unit 7 restrains the sliding movement of the operation lever 4 and makes it impossible to perform the speed changing operation until the pushing operation of the push lever portion 4a of the operation lever 4 is detected by the operation detector unit 6. As a result, the operation detector unit 6 performs its detection task in a reliable manner and the electric power supplied to the motor 5 is controlled so that the motor 5 can rotate at the revolution number corresponding to the gear reduction ratio. Therefore, it becomes possible to prevent the electric power tool from suffering from trouble which would otherwise occur due to the wear or damage of the gears 8a of the speed reducer unit 8 caused by the speed changing operation performed during the course of work. Furthermore, it is possible to assure enhanced reliability and to reduce the strength required in the gears 8a of the speed reducer unit 8. Therefore, it becomes possible, for example, to change the material of the gears 8a from metal to resin. This eliminates the need to make the gears 8a from high strength metal or to increase the size of the gears 8a, eventually making it possible to avoid an increase in the cost and weight of the electric power tool 1.
The photo interrupter 6b detects the push lever portion 4a when the latter is in the generally middle position T1. In other words, the photo interrupter 6b does not detect the push lever portion 4a unless the latter is pushed down by a predetermined amount. This makes it possible to prevent an erroneous operation of the electric power tool which would otherwise occur when the push lever portion 4a is touched inadvertently. Owing to the fact that the interrupter plate 6a extends in the speed changing direction R, a single interrupter plate is sufficient to cover a plurality of pushing positions T2 of the push lever portion 4a. This eliminates the need to use a sensor, e.g., the photo interrupter 6b, in plural numbers, while assuring reduced cost and weight. Use of the non-contact sensor assists in preventing wear of the interrupter plate 6a and prolonging the life span thereof. Since the photo interrupter 6b is a non-contact sensor, it can be used for a long period of time. In addition, the lead wire through which to send a detection signal from the sensor to a power supply circuit of the motor 5 is kept stationary regardless of the operation of the operation lever 4. This reduces the probability that the lead wire is flexed and eventually disconnected, thereby making it possible to increase reliability.
The slide restraint unit 7 of the present embodiment includes the projection portions 7a provided to the push lever portion 4a of the operation lever 4 and the guide portions 7b provided in the housing 2. This makes it possible to easily construct slide restraint unit 7 by using the operation lever 4 and the housing 2. Furthermore, each of the guide portion 7b includes the slide operation groove 10 extending in the speed changing direction R and the pair of push operation grooves 9 extending in the pushing direction S from the opposite ends of the slide operation groove 10. The slide operation groove 10 and the push operation grooves are continuously formed to have a substantially U-like shape. This makes it possible simplify the configuration of the guide portion 7b. In addition, since the guide portions 7b are provided in the housing 2 and the projection portions 7a are provided to the operation lever 4, it is possible to reduce the size of the slide-type operation switch 50.
There may be a fear that the precision electronic parts (e.g., the sensor such as the photo interrupter 6b or the like and the switch such as the operation detector unit 6 or the like) arranged just below the operation lever 4 are damaged if a falling impact force or the like is applied to the operation lever 4. In the present embodiment, the operation surfaces 4c of the operation lever 4 are depressed by a predetermined depth W (see
When the operation lever 4 of this example is in the non-pushed position T, the projection portions 7a are resiliently pressed against the guide portions 7b by the coil springs as shown in
As set forth above, the slide restraint unit 7 of this example is capable of bringing the projection portions 7a from a movement-restrained state into a movement-permitted state in response to the pushing operation of the push lever portion 4a of the operation lever 4. This ensures that the transition from the pushing operation to the speed-changing sliding operation occurs in a smoother manner. Furthermore, it is possible to easily construct the slide restraint unit 7 using the projection portions 7a and the resilient bodies 12 provided to the operation lever 4 and the guide portions 7b provided in the housing 2. Owing to the fact that the guide portions 7b are formed to extend in the radial direction (i.e., the thickness direction), it becomes easy to reduce the circumferential size of the housing 2. Since the guide portions 7b are opened downwards, it is possible to prevent dust from gathering in the guide portions 7b.
Although the operation lever 4 is divided into the slide lever portion 4b and the push lever portion 4a and only the push lever portion 4a is pushed according to the foregoing embodiment, the present invention is not limited thereto. Alternatively, the operation lever 4 may be formed into a single piece so that the sliding operation can be performed while pushing the operation lever 4 as a whole.
Although the photo interrupter 6b is used as the operation detector unit 6 and the interrupter plate 6a is used as the detected plate according to the foregoing embodiment, other sensors such as a magnetic sensor and the like may be used instead of the combination of the photo interrupter 6b and the interrupter plate 6a. As a further alternative, it may be possible to use a typical mechanical contact switch, e.g., a tact switch, a limit switch or a micro switch.
Although the speed changing direction R is the back-and-forth direction parallel to the axial direction D of the rotation shaft of the motor 5 according to the foregoing embodiment, the present invention is not limited thereto. As an alternative example, the speed changing direction R may be the left-and-right direction perpendicular to the rotation shaft of the motor 5. In this case, the guide portion 7b may be a substantially U-shaped groove extending in the circumferential direction of the housing 2. This assists in reducing the radial size of the housing 2.
While the invention has been shown and described with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modification may be made without departing from the scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2008-102841 | Apr 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3710873 | Allen | Jan 1973 | A |
4487270 | Huber | Dec 1984 | A |
4493223 | Kishi et al. | Jan 1985 | A |
5056607 | Sanders | Oct 1991 | A |
5083620 | Fushiya et al. | Jan 1992 | A |
5277527 | Yokota et al. | Jan 1994 | A |
5339908 | Yokota | Aug 1994 | A |
5361853 | Takamura et al. | Nov 1994 | A |
5738177 | Schell et al. | Apr 1998 | A |
6186709 | Hsu | Feb 2001 | B1 |
6536536 | Gass et al. | Mar 2003 | B1 |
6836614 | Gilmore | Dec 2004 | B2 |
6918449 | Shinagawa et al. | Jul 2005 | B2 |
6971456 | Yamada et al. | Dec 2005 | B2 |
20040188233 | Breitenmoser | Sep 2004 | A1 |
20090071673 | Zhong et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
199 19 115 | Nov 2000 | DE |
2 526 348 | Nov 1983 | FR |
S61-288909 | Dec 1986 | JP |
S63-185589 | Aug 1988 | JP |
H05-073343 | Oct 1993 | JP |
H05-80611 | Nov 1993 | JP |
07-205050 | Aug 1995 | JP |
2006-150518 | Jun 2006 | JP |
2007025322 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090255361 A1 | Oct 2009 | US |