Electric powered rotary-wing aircraft

Information

  • Patent Grant
  • 8931732
  • Patent Number
    8,931,732
  • Date Filed
    Wednesday, January 23, 2008
    16 years ago
  • Date Issued
    Tuesday, January 13, 2015
    9 years ago
Abstract
A rotary-wing aircraft with an electric motor mounted along an axis of rotation to drive a rotor system about the axis of rotation.
Description
BACKGROUND

The present invention relates to a rotary-wing aircraft with an electric propulsion system.


Conventional rotary-wing aircraft typically utilize a mechanical drive train to transmit power from one or more engines to drive main and tail rotor systems. The helicopter mechanical drive train may include a main rotor gearbox, an intermediate gearbox, a tail rotor gearbox and their inter-connecting shafts. The main rotor gearbox converts the high speed input from each engine to a low speed output for the main rotor system. The main rotor gearbox may also provide power take-offs to drive an anti-torque system, a hydraulic system and other such systems. Elimination of the main gearbox and hydraulic systems may result in a significant reduction in aircraft weight and maintenance requirements.


SUMMARY

A rotary-wing aircraft according to an exemplary aspect of the present invention includes a rotor system rotatable about an axis of rotation and an electric motor mounted along said axis of rotation to drive said rotor system about said axis of rotation.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:



FIG. 1 is a general schematic view of one exemplary all-electric vertical takeoff and landing (VTOL) rotary-wing aircraft in one non-limiting embodiment of the present invention;



FIG. 2 is a general schematic view of another exemplary all-electric vertical takeoff and landing (VTOL) rotary-wing aircraft in one non-limiting embodiment of the present invention; and



FIG. 3 is a general schematic view of another exemplary all-electric vertical takeoff and landing (VTOL) rotary-wing aircraft in one non-limiting embodiment of the present invention.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS


FIG. 1 schematically illustrates an exemplary all-electric vertical takeoff and landing (VTOL) rotary-wing aircraft 10. The aircraft 10 in the non-limiting embodiment of FIG. 1 includes a main rotor system 12 supported by an airframe 14 having an extending tail 16 which mounts an anti-torque system 18 such as a tail rotor system. The main rotor system 12 includes a multiple of rotor blades 20 mounted to a rotor hub 22. Although a particular helicopter configuration is schematically illustrated in the disclosed non-limiting embodiments, other configurations and/or machines, such as Unmanned Air Vehicles, high speed compound rotary wing aircraft with supplemental translational thrust systems, dual contra-rotating, coaxial rotor system aircraft, tilt-rotors and tilt-wing aircraft in either manned or unmanned configurations will also benefit herefrom.


The main rotor system 12 is driven about an axis of rotation R through an electric motor 24 such as a high torque, low speed electric motor. The electric motor 24 may directly drive the main rotor system 12 without a main rotor gearbox and may in one non-limiting embodiment be an overrunning electric motor which incorporates an overrunning clutch that disengages when the rotor system 12 rotates faster than the electric motor 24. A secondary electric motor 26 within the extending tail 16 direct drives the anti-torque system 18. The electric motors 24, 26 may be controlled by an electronic speed controller 28 over a wide range of speeds in response to a flight control system 30. A slip ring system 34 may be located prior to the motor 24. That is, the slip ring system 34 is located in communication with the rotor section of the motor 24.


An electromechanical servo system 32 may include a main rotor servo system 32M which pitches each rotor blade 20 and an anti torque servo system 32T which operates the anti torque system 18. The main rotor servo system 32M, in one non-limiting embodiment, is mounted directly within the rotor hub 22 to pitch each rotor blade 20 individually. The anti torque servo system 32T, in one non-limiting embodiment, is mounted within the extending tail 16. Power for the electric motors 24, 26 and electromechanical actuators are supplied by an on-board power source 36 such as a battery, hybrid source of electricity or such like. It should be understood that various power sources may be alternatively or additionally provided. The electromechanical servo system 32 is powered by the on-board power source 36 and controlled through the flight control system 30.


The flight control system 30 generally includes an automatic flight control system (AFCS) 40 in communicating with other avionics systems and components such as the electronic speed controller 28, a collective controller 42A, a cyclic controller 42B, a yaw controller 42C and a cockpit instrument display system 44. It should be understood that at least some of these subsystems need not be provided for an Unmanned Air Vehicle (UAV) embodiment.



FIG. 2 schematically illustrates another exemplary all-electric vertical takeoff and landing (VTOL) rotary-wing aircraft 10A. In this non-limiting embodiment, a high torque, low speed electric motor 50 is integrated into the main rotor hub 22A of the main rotor system 12. The rotor hub 22A may include at least a portion of a rotor section of the electric motor 50 while a main rotor shaft 52 is non-rotating and fixed to the airframe 14. A slip ring system 54 may be located intermediate the motor 50 and the main rotor shaft 52. In this non-limiting embodiment, a main rotor gearbox is eliminated.



FIG. 3 schematically illustrates another exemplary all-electric vertical takeoff and landing (VTOL) rotary-wing aircraft 10B. In this non-limiting embodiment, a high torque, low speed electric motor 60 is integrated into a main rotor shaft 62. The main rotor shaft 62 may include at least a portion of a rotor section of the electric motor 60. A slip ring system 64 may be located adjacent the electric motor 60, e.g., in the main rotor hub 22B. In this non-limiting embodiment, a main rotor gearbox is eliminated.


It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit from the instant invention.


Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.


The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The disclosed embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.

Claims
  • 1. A rotary-wing aircraft comprising: a rotor system rotatable about an axis of rotation; andan electric motor mounted along said axis of rotation to drive said rotor system about said axis of rotation; anda servo system mounted within said rotor system to pitch a rotor blade mounted to a rotor hub.
  • 2. The aircraft as recited in claim 1, further comprising a controller within said rotary-wing aircraft to operate said servo system.
  • 3. A rotary-wing aircraft comprising: a rotor system rotatable about an axis of rotation; andan electric motor mounted along said axis of rotation to drive said rotor system about said axis of rotation, said electric motor mounted at least partially within a rotor hub of said rotor system.
  • 4. The aircraft as recited in claim 3, further comprising a rotationally fixed rotor shaft which mounts said rotor hub.
  • 5. The aircraft as recited in claim 3, wherein said electric motor is an overrunning motor.
  • 6. The aircraft as recited in claim 3, further comprising a servo system mounted within said rotor system to pitch a rotor blade mounted to a rotor hub.
  • 7. The aircraft as recited in claim 6, further comprising a controller within said rotary-wing aircraft to operate said main rotor servo system.
  • 8. The aircraft as recited in claim 3, wherein said electric motor is mounted completely within said rotor hub.
  • 9. The aircraft as recited in claim 3, wherein said servo system is operable to pitch a rotor blade mounted to said rotor hub.
  • 10. A rotary-wing aircraft comprising: a rotor system rotatable about an axis of rotation; andan electric motor mounted along said axis of rotation to drive said rotor system about said axis of rotation, said electric motor mounted at least partially within a rotor shaft of said rotor system.
  • 11. The aircraft as recited in claim 10, wherein said electric motor is an overrunning motor.
  • 12. The aircraft as recited in claim 10, further comprising a servo system mounted within said rotor system to pitch a rotor blade mounted to a rotor hub.
  • 13. The aircraft as recited in claim 12, further comprising a controller within said rotary-wing aircraft to operate said servo system.
  • 14. The aircraft as recited in claim 10, wherein said electric motor is mounted completely within said rotor shaft.
  • 15. The aircraft as recited in claim 10, wherein said servo system is operable to pitch a rotor blade mounted to said rotor hub.
Parent Case Info

The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/991,395, filed Nov. 30, 2007.

US Referenced Citations (45)
Number Name Date Kind
2961052 Smith et al. Nov 1960 A
3857194 Guttman Dec 1974 A
4109885 Pender Aug 1978 A
4418880 de Waal Dec 1983 A
4601444 Lindenbaum Jul 1986 A
4695012 Lindenbaum Sep 1987 A
4786014 Pesando et al. Nov 1988 A
5054713 Langley et al. Oct 1991 A
5115996 Moller May 1992 A
5123615 Wagner et al. Jun 1992 A
5351911 Neumayr Oct 1994 A
5361581 Clark Nov 1994 A
RE35172 Clark Mar 1996 E
5575438 McGonigle et al. Nov 1996 A
5609312 Arlton et al. Mar 1997 A
5627311 Nakaya et al. May 1997 A
5687930 Wagner et al. Nov 1997 A
5756891 Nakaya et al. May 1998 A
5866813 Nakaya et al. Feb 1999 A
5879131 Arlton et al. Mar 1999 A
6016991 Lowe, Jr. Jan 2000 A
6179247 Milde, Jr. Jan 2001 B1
6270036 Lowe, Jr. Aug 2001 B1
6346025 Tachau et al. Feb 2002 B1
6382556 Pham May 2002 B1
6450446 Holben Sep 2002 B1
6502787 Barrett Jan 2003 B1
6550715 Reynolds et al. Apr 2003 B1
6622472 Plumpe, Jr. Sep 2003 B2
6655631 Austen-Brown Dec 2003 B2
6659395 Rehkemper et al. Dec 2003 B2
6732972 Malvestuto, Jr. May 2004 B2
6808140 Moller Oct 2004 B2
6886776 Wagner et al. May 2005 B2
6908286 Leskow et al. Jun 2005 B2
6966174 Paul Nov 2005 B2
6974105 Pham Dec 2005 B2
7032861 Sanders, Jr. et al. Apr 2006 B2
7149611 Beck et al. Dec 2006 B2
7159817 VanderMey et al. Jan 2007 B2
7178758 Rehkemper Feb 2007 B2
7201346 Hansen Apr 2007 B2
7249732 Sanders, Jr. et al. Jul 2007 B2
20020005456 Toulmay Jan 2002 A1
20040200924 Clark, Jr. et al. Oct 2004 A1
Non-Patent Literature Citations (11)
Entry
Dave Jackson, ˜ Other: Helicopter—Inside—Coaxial—Electric Motor Located between Rotors, ˜ Internet; Initially displayed: Apr. 21, 2003 ˜ Posed on PPRuNe: May 15, 2004 ˜ Last Revised: Jul. 4, 2005, ˜ Web page / 3 hardcopy pages, ˜ Publisher; Uniserve communications Corporation, New Westminster, Canada. ˜ http://www.unicopter.com/0812.html.
Jayant Sirohi, ˜ Design and Testing of a Rotary Wing MAV with an Active Structure for Stability and Control, ˜ 61st American Helicopter Society's Annual Forum, ˜ Date; Jun. 1-3, 2005, ˜ 1 Web page / 11 hardcopy pages, ˜ Publisher ˜ http://www.vtol.org/pdf/61AircraftDesionll.pdf.
Dave Jackson, ˜ Electrotor ˜ Rotor, ˜ Internet; Initially displayed: Aug. 6, 2006 ˜ Last Revised: Sep. 28, 2006, ˜ 1 Web page / 3 hardcopy pages, ˜ Publisher Uniserve Communications Corporation, PO Box 187, 610 6th Street, New Westminster, BC, V3L 3C2, Canada. ˜ http://www.unicopter.com/ElectrotorSloMo—Rotor.html.
Dave Jackson, ˜ Aerodynamics ˜ Two electrically driven rotor concepts for future rotorcraft, ˜ Jun. 23, 2007, ˜ 1 Web page, ˜ Publisher ˜ PPRuNe ˜ Professional Pilots Rumor Network ˜ Internet Brands Inc, El Segundo, USA ˜ http://www.pprune.org/rotorheads/281332-aerodynamics-two-electrically-driven-rotor-concepts-future-rotorcraft.html.
Dave Jackson, [Intermesher], ˜ Electrically driven rotor concept for future rotorcraft. ˜ Jun. 24, 2007 ˜ 1 Web page / 2 hardcopy pages, ˜ Publisher; ˜ Eng-Tips Forums—Tecumseh Group, Inc., Herndon, USA ˜ http://www.eng-tips.com/viewthread.cfm?qid=190505&page=1.
Dave Jackson, ˜ ElectrotorPlus ˜ MGGA ˜ Patent ˜ Potential Patent Application ˜ Placed on the Internet on Jul. 7, 2007 ˜ 1 Web page / 12 hardcopy pages, ˜ Publisher; Uniserve Communications Corporation, New Westminster, Canada, ˜ http://www.unicopter.com/ElectrotorPlus—Patent—Application.doc, http://www.unicopter.com/PATENT—FIG—5.DXF.
Dave Jackson, ˜ Design: Electrotor-Simplex—Rotor—Hub—Overview of Gimbaled w/ Torque Collective A ˜ Internet; Initially displayed: Sep. 29, 2007 ˜ Last Revised: Oct. 4, 2007, ˜ 1 Web page / 3 hardcopy pages, ˜ Publisher; Uniserve Communications Corporation, New Westminster, Canada, ˜ http://www.unicopter.com/1566.html.
Dave Jackson, [Rotor Rooter], ˜ Electrically driven rotor concept for future rotorcraft. ˜ Oct. 22, 2007 ˜ 1 Web page, ˜ Publisher; Rotary Wing Forum, Spokane, USA. ˜ http://www.rotaryforum.com/forum/showthread.php?p=197918&highlight=exceptionally#post197918.
Dave Jackson, ˜ Design: Electrotor-Simplex—Control—Electrical—Layout ˜ Internet; Initially displayed: Sep. 29, 2007 ˜ Last Revised: Nov. 22, 2007 ˜ Publisher; Uniserve Communications Corporation, New Westminster, Canada. ˜ http://www.unicopter.com/1594.html.
Dave Jackson, ˜ Design: Electrotor-Simplex—Control. ˜ Internet; Last Revised: Nov. 28, 2007 ˜ Publisher; Uniserve Communications Corporation, New Westminster, Canada. ˜ http://www.unicopter.com/A143.html.
PCT International Search Report and Written Opinion mailed Aug. 14, 2009, PCT/US2008/076962.
Related Publications (1)
Number Date Country
20090140095 A1 Jun 2009 US
Provisional Applications (1)
Number Date Country
60991395 Nov 2007 US