The present invention relates to an electric pump.
An electric oil pump (EOP) serves to discharge a fluid at a predetermined pressure. Such an oil pump includes a housing, a gear part disposed in the housing, and a motor which drives the gear part. However, the conventional electric oil pump has a problem that a gear part and a motor part are mechanically separate, and thus a length in an axial direction is increased.
In addition, since the housing is formed of a plastic material, thermal deformation may occur due to heat generated from the gear part during operation. Accordingly, there is a problem that an efficiency of the electric oil pump is degraded because a clearance is present between the housing and the gear part or an error between axial centers of a plurality of gears included in the gear part occurs.
The present invention is directed to providing an oil pump in which a housing is miniaturized, a clearance of a gear part in an axial direction due to thermal deformation of the housing is prevented, and the gear part is driven stably.
One aspect of the present invention provides an electric pump including a housing, a gear part disposed in the housing, a stator disposed to correspond to the gear part, and a support member disposed between the gear part and the housing, wherein the gear part includes a first gear, a second gear disposed to correspond to the first gear, and a magnet disposed on the second gear, and the support member includes a first region supporting the first gear and a second region protruding from the first region and inserted into the first gear.
The second region may pass through the first gear.
Another aspect of the present invention provides an electric pump including a housing, a gear part disposed in the housing, a stator disposed to correspond to the gear part, a cover disposed above the gear part, and a support member disposed under the gear part, wherein the support member includes a second region which passes through the gear part in an axial direction and is coupled to the cover.
The housing may be coupled to the cover.
The housing may include a lower surface supporting the gear part and the support member and a sidewall extending upward from the lower surface.
Still another aspect of the present invention provides an electric pump including a mold member, a gear part disposed in the mold member, a stator disposed to correspond to the gear part, and a support member disposed between the gear part and the mold member and formed of a metal material, wherein the gear part includes a first gear, a second gear disposed to correspond to the first gear, and a magnet disposed on the second gear, and at least a part of the support member is disposed between a lower surface of the gear part and one surface of the mold member.
The stator may be embedded in the mold member.
The mold member may include an accommodation portion in which the gear part is disposed, and an upper surface of the mold member may be disposed at a higher level than an upper end of the stator.
The electric pump may include a cover disposed above the gear part, wherein at least a part of the cover may be disposed in the accommodation portion.
Yet another aspect of the present invention provides an electric pump including a housing, a gear part disposed in the housing, a driving part which drives the gear part, and a support member disposed between the gear part and the housing, wherein the gear part includes a first gear and a second gear which rotates to correspond to the first gear, the driving part includes a magnet disposed on the second gear and a coil disposed to correspond to the magnet, and the support member includes a first region coupled to the housing and a second region fixed to the first gear.
The housing may include an accommodation portion in which the gear part is disposed.
The support member may include aluminum.
One region of the support member may pass through the gear part in an axial direction, and another region may support the gear part in the axial direction.
An upper end of the support member may be disposed at a higher level than an upper surface of the gear part.
A maximum diameter of the support member may be greater than or equal to an outer diameter of the gear part.
A through hole in which the support member is disposed may be formed in the gear part, and a protruding part protruding toward an axial center may be formed in an inner circumferential surface in which the through hole is formed.
The support member may include a side surface facing the inner circumferential surface of the gear part in a radial direction, and a part of the side surface of the support member may be in contact with the protruding part, and another part may be spaced apart from the inner circumferential surface of the gear part.
According to the present invention, an electric pump can be stably driven by preventing a clearance of a gear part in an axial direction due to thermal deformation of a housing and reducing an error between axial centers of gears included in the gear part.
According to the present invention, a separate motor part can be omitted by providing power necessary for pumping oil using an electrical interaction between a gear part and a stator. Accordingly, a length of an electric pump in an axial direction can be reduced, and thus the electric pump can be miniaturized.
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
A direction parallel to a rotation axis which is a center of a rotational motion of a gear part is referred to as an axial direction, a direction perpendicular to the axial direction is referred to as a radial direction from the rotation axis, and a direction along a circle, which has a radius in the radial direction from a center in the axial direction, is referred to as a circumferential direction.
Referring to
The housing 110 and the cover 150 may form an exterior of the electric pump 10. The stator 130 and the gear part 120 may be disposed in the housing 110. The housing 110 may be formed of a resin or plastic material.
The housing 110 may include a lower surface 111 and a sidewall 112. In this case, the lower surface 111 may support the stator 130 and the gear part 120 in an axial direction. In addition, the sidewall 112 may surround an outer side of the stator 130. In this case, the gear part 120 may be disposed inside the stator 130.
The gear part 120 rotates through an electrical interaction with the stator 130. The gear part 120 may be disposed to correspond to the stator 130 and disposed the stator 130. The gear part 120 serves to pump a fluid and provides power necessary for pumping.
The stator 130 is disposed to correspond to the gear part 120. A coil for generating a rotating magnetic field is wound around the stator 130 to induce an electrical interaction with the gear part 120 to induce rotation of the gear part 120.
The support member 140 may be disposed between the gear part 120 and the housing 110. In this case, the support member 140 may be fixed to a lower surface 101. In addition, an end portion of the support member 140 may pass through the gear part 120 and may be coupled to the cover 150. The support member 140 may be formed of a metal material. The support member 140 may rub against the lower surface of the gear part 120 while the gear part 120 rotates. The support member 140 may reduce rotational friction of the gear part 120 and prevent a clearance of the gear part 120 in the axial direction. In addition, one side of the support member 140 may pass through the gear part 120 in the axial direction to fix a rotating center of the gear part 120.
The cover 150 may be disposed above the gear part 120. The cover 150 may be coupled to the housing 110. The cover 150 may be formed of a metal material. In this case, the cover 150 may be formed of the same material as the support member 140. The cover 150 may include aluminum.
The power supply 160 may be disposed at one side of the housing 110. In addition, the power supply 160 may be electrically connected to the stator 130 to supply a current to the stator 130. The power supply 160 may include a printed circuit board and electronic components mounted on the printed circuit board.
Referring to
The mold member 210 covers the stator 230. In this case, the mold member 210 may be injection-molded into the stator 230. In addition, the mold member 210 may include an accommodation portion therein. The gear part 220 is disposed in the accommodation portion. The accommodation portion may have a cylindrical shape. A diameter of the accommodation portion may be greater than an outer diameter of the gear part 220.
The gear part 220 may be disposed in the accommodation portion of the mold member 210. In addition, the gear part 220 may include a first gear 221, a second gear 222, and a magnet 223. The second gear 222 is disposed outside the first gear 221. In addition, the magnet 223 may be disposed on an outer circumferential surface of the second gear 222. The magnet 223 may be provided as a plurality of magnets 223. The magnets 223 may be disposed in a circumferential direction.
The stator 230 is disposed in the mold member 210. In addition, the stator 230 is disposed to correspond to the gear part 220. The stator 230 is electrically connected to the power supply 260, and when a current is supplied from the power supply 260, an electrical interaction with the magnet 223 may be induced.
The support member 240 is disposed between the gear part 220 and the mold member 210. One surface of the support member 240 is in contact with the mold member 210. In this case, one surface of the support member 240 may be fixed to the mold member 210. An end portion of the support member 240 may pass through the gear part 220. In addition, the end portion of the support member 240 may be coupled to the cover 250. The support member 240 may be formed of a metal material. The support member 240 may slide with respect to the gear part 220 when the gear part 220 is driven by an electrical interaction between the stator 230 and the gear part 220. The support member 240 is formed of the metal material and has excellent sliding properties with respect to the gear part 220. In addition, a clearance in an axial direction between the gear part 220 and the mold member 210 may be prevented. In addition, the support member 240 fixes a rotating center of the gear part 220, and thus the gear part 220 can be driven more stably.
The cover 250 may be disposed above the gear part 220 and coupled to an upper end of the mold member 210. The cover 250 may be formed of a metal material. The cover 250 may include a suction port (not shown) and a discharge port (not shown). The suction port (not shown) and the discharge port (not shown) may guide a fluid to be smoothly sucked and discharged by the gear part 220.
The power supply 260 may be disposed at one side of the mold member 210. In addition, the power supply 260 may be electrically connected to the stator 230 to supply a current to the stator 230. The power supply 260 may include a printed circuit board and electronic components mounted on the printed circuit board.
Referring to
The mold member 210 may cover the stator core 231, the coil 232, and the insulator 233. In this case, the mold member 210 may be coupled to the stator 230 in an injection manner. An insert injection manner may be used as the injection manner. In this case, the mold member 210 may be formed of a resin or plastic material. For example, the mold member 210 may be formed of a thermally conductive plastic material. The thermally conductive plastic material may include a pellet type resin, a heat dissipation resin, a polyphtalamide (PPA) resin, carbon nanotubes (CNTs), or the like.
The cover 250 may be disposed on an upper surface 210A of the mold member 210. In this case, the upper surface 210A of the mold member 210 may be disposed at a higher level than an upper end of the stator 230. In addition, at least one fastening hole 210H may be formed in the upper surface 210A of the mold member 210. In addition, a screw thread for coupling with a fastening member may be formed in the fastening hole 210H. In this case, the fastening hole 210H may be coupled to the cover 250 by the fastening member.
The mold member 210 may form an accommodation portion S. The gear part 220 may be disposed in the accommodation portion S. The accommodation portion S may have a cylindrical shape. A length of the accommodation portion S in the axial direction may be greater than a length of the gear part 220 in the axial direction. In addition, the diameter of the accommodation portion S may be larger than the outer diameter of the gear part 220.
In addition, an upper side of the accommodation portion S may be closed by the cover 250.
An edge of the cover 250 is coupled to the upper surface 210A of the mold member 210. A central portion of the cover part 250 may protrude toward the gear part 210 and be disposed in the accommodation portion S. In this case, the central portion of the cover 250 may fix an upper end of the gear part 220. In addition, the accommodation portion S may be connected to the suction port (not shown) and the discharge port (not shown) of the cover 250. In this case, the suction port (not shown) and the discharge port (not shown) may be formed to be spatially partitioned.
Although the present embodiment has been described with reference to the gear part 220 and the support member 240 illustrated in
Referring to
The first region 241 is disposed under the gear part 220. In this case, the first region 241 may support a lower surface of the gear part 220. In addition, the first region 241 may be fixed to the mold member 210. The first region 241 may have a disc shape. A diameter D2 of the first region 241 may be greater than or equal to an outer diameter D1 of the gear part 220. Meanwhile, although not illustrated in the drawings, the diameter of the first region may be smaller than the outer diameter of the gear part, and an edge of the gear part may be spaced apart from the mold member.
The second region 242 may protrude from the first region 241. The second region 242 may pass through the first gear 221. In this case, the second region 242 may be disposed at a rotating center of the first gear 221. The second region 242 may be a cylindrical member extending in the axial direction. In this case, a diameter of the second region 242 may be smaller than a diameter of an inner circumferential surface of the first gear 221.
Referring to
Referring to
The gear part 220 electrically interacts with the stator 330 to pump the oil and also provide power necessary for pumping. Accordingly, in the electric pump according to the present invention, a length in the axial direction can be reduced by omitting a separate motor part.
Referring to
The first region 241 may include a first surface 241A and a second surface 241B. The first surface 241A and the second surface 241B may be disposed in the axial direction. In this case, the first surface 241A is disposed toward the gear part 220. In addition, the second surface 241B is disposed toward the mold member 210. The first surface 241A is in contact with the gear part 220, and the second surface 241B is in contact with the mold member 210. In this case, while the gear part 220 rotates, a contact portion between the first surface 241A and the gear part 200 may be rubbed. The diameter D2 of the first region 241 may be greater than or equal to the outer diameter of the gear part 220.
The first region 241 may have the disc shape. In this case, the first region 241 may have a first thickness T1 in the axial direction. In this case, the first thickness T1 may be equal to a value obtained by subtracting a length of the gear part 220 in the axial direction from a distance between the cover 250 and the mold member 210 disposed in the accommodation portion S. In this case, a height of the gear part 220 in the axial direction may be adjusted according to the first thickness T1 of the first region 241. In addition, clearances between the mold member 210, the gear part 220, and the cover 250 disposed in the axial direction can be prevented by adjusting the first thickness T1 of the first region 241.
The second region 242 extends from the first region 241. The second region 242 may be disposed on the first surface 241A. The second region 242 may be eccentrically disposed with respect to a center of the first surface 241A. A shortest distance from one point P1 of an edge of the first surface 241A to the second region 242 may be different form a shortest distance from another point P2 of an edge of the upper surface of the first region 241 to the second region 242.
The second region 242 may include a first portion 2421 and a second portion 2422. The first portion 2421 may extend from the first region 241. The first portion 2421 may be disposed inside the first gear 221. In this case, a diameter D3 of the first portion 2421 may be smaller than or equal to the diameter of the inner circumferential surface of the first gear 221. As described above, the first portion 2421 may be disposed at a rotation axis which is a center of a rotational motion of the first gear 221 to support a motion of the gear part 220 in a radial direction.
The second portion 2422 may extend from an end portion of the first portion 2421. The second portion 2422 may be disposed above the upper surface of the first gear 221. In addition, the second portion 2422 may be coupled to the cover 250. In this case, a groove corresponding to a shape of the second portion 2422 may be formed in the cover 250, and the second portion 2422 may be disposed in the groove. A diameter D4 of the second portion 2422 may be smaller than the diameter D3 of the first portion 2421. According to the embodiment, a ratio of the diameter of the second portion 2422 to the diameter D3 of the first portion 2421 may be in the range of 0.5 to 0.8. The support member 240 may support a movement of the gear part 220 in the radial direction while the gear part 220 is driven and be coupled to the cover 250 to increase a fixing force.
A length L of the second region 242 in the axial direction is equal to the sum of lengths of the first portion 2421 and the second portion 2422 in the axial direction. In this case, the first portion 2421 may have a first length L1 in the axial direction, and the second portion 2422 may have a second length L2 in the axial direction. In this case, the first length L1 may be greater than the second length L2. According to the embodiment, a ratio of the second length L2 to the first length L1 may be in the range of 0.15 to 0.4.
Meanwhile, according to another embodiment of the present invention, although not illustrated in the drawings, the length L of the second region 242 may be smaller than the length of the gear part 220 in the axial direction. In this case, an upper end of the second region 242 may be disposed at a lower level than an upper surface of the gear part 220. In addition, the upper end of the second region 242 may be spaced apart from the cover 250.
Referring to
Referring to
Referring to
The first gear 221 may include a protruding part 2212 protruding toward the rotation axis RA. The protruding part 2212 may be disposed on the inner circumferential surface of the first gear 221. In this case, the protruding part 2212 may include a protruding surface 221A in contact with the side surface 2421A of the first portion 2421.
The side surface 2421A of the first portion 2421 may include a first part 2421A1, a second part 2421A2, and a third part 2421A3.
The first part 2421A1 may be in contact with the protruding surface 221A. The first part 2421A1 may be spaced apart from the first region 241. In addition, the second part 2421A2 may be disposed between the first region 241 and the first part 2421A1. In this case, the second part 2421A2 may be spaced apart from the first gear 221. The second part 2421A2 may have a greater length than the first part 2421A1 in the axial direction. In addition, the third part 2421A3 may be disposed between the first part 2421A1 and the second portion 2422. In this case, the third part 2421A3 may be spaced apart from the first gear 221. Meanwhile, the cover 250 may include a protrusion 251 protruding between the third part 2421A3 and the first gears 221. In addition, a groove 250G may be formed inside the protrusion 251 in the cover 250. In this case, the second portion 2422 may be disposed in the groove 250G. A length of the groove 250G in the axial direction may be greater than a length of the second portion 2422 in the axial direction. In this case, the upper end of the second portion 2422 may be spaced apart from the cover 250.
The cover 250 may include a seating surface 250A disposed between the groove 250G and the protrusion 251. In this case, the seating surface 250A may be in contact with the step 2423. As described above, the cover 250 may include a structure for being fixedly coupled to the support member 240 to increase a fixing force of the support member 240.
In Example of
In Comparative Example 1, a change in flow rate of oil with respect to a pressure of the oil of the conventional electric pump in which the motor part and the pump part were mechanically separated was measured. The electric pump of Comparative Example 1 has a structure in which power generated in the motor part is transmitted to the pump part to operate the pump part.
In Comparative Example 2, a change in flow rate of oil with respect to a pressure of the oil of an electric pump in which the support member in the structure of
Referring to
Conversely, in Example, it can be seen that a decrease in the flow rate of the oil is relatively small even when the pressure of the oil increases compared to Comparative Example 2. In this case, it can be seen that a decrease in the flow rate of Example and a decrease in the flow rate of Comparative Example 1 are similar. That is, it can be seen that, while Example has a structure similar to that of Comparative Example 2, there is no significant difference in oil pumping performance between Example and Comparative Example 1. As described above, in the electric pump according to the present invention, the size can be minimized by reducing the length in the axial direction, and the oil pumping performance can be maintained by preventing the generation of the clearance between the gear part and the housing in the axial direction.
Embodiments have been described using the examples of the electric pump but are not limited thereto. The embodiments can be used for various devices such as vehicles or home appliances.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0128777 | Oct 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2021/013665 | 10/6/2021 | WO |