The present invention relates to an electric pushbutton switch having a pushbutton and a housing in which the pushbutton is displaceable against the housing by pressure actuation on an actuating surface of the pushbutton thereby triggering an electrical switching element. The present invention further relates to an operating element having the pushbutton switch.
A problem with existing guides made of guide ribs and guide grooves for a pushbutton is the tendency for the pushbutton to jam when the lengths of the guides are short. Tilting of a rectangular-shaped pushbutton having a long length and a narrow width that is supported within an opening of a housing may result in jamming of the pushbutton in the housing. This is particularly the case when the lengths of linear guides formed on the narrow width sides of the pushbutton are short in comparison to the length of the pushbutton.
Regardless of possible jamming, tilting of the pushbutton also results in an altered actuation feel due to changed actuating paths and actuating forces. Based on experience, unacceptably high friction and high actuating forces result when the length of a linear guide formed from a guide rib and a guide groove is shorter than one-half of the overall length of the pushbutton. Designing a comfortably actuatable pushbutton having a relatively large longitudinal extension (i.e., a large overall length) thus requires a relatively long length linear guide. This results in a relatively large installation height of the pushbutton switch. In many cases, however, a large installation height is undesirable.
Space bars on computer keyboards form pushbuttons having a large longitudinal extension in comparison to the actuating path. For such a pushbutton, eccentrically supported wire clips are often used which stabilize the pushbutton. A disadvantage of this approach is the relatively low bending and torsional rigidity of such wires and the long paths in the force action chain. Both properties result in tilting of the pushbutton at higher actuating forces.
An object is a pushbutton switch having a pushbutton which is long in comparison to the installation height and which does not have a tendency to tilt or jam.
Another object is for the pushbutton of the pushbutton switch to have uniform switch haptics that are independent of the selected actuation site.
Another object is an operating element having the pushbutton switch.
In carrying out at least one of the above and/or other objects, an electric pushbutton switch is provided. The pushbutton switch includes a housing, a pushbutton, an electrical switching element, and a rocker. The housing and the rocker are rectangular, box-shaped. The pushbutton has a rectangular actuating surface and a pair of longitudinally extending side walls and a pair of laterally extending side walls extending perpendicular from the actuating surface. The pushbutton is arranged within the housing and being displaceable relative to the housing upon a pressure actuation onto the actuating surface. The rocker is arranged within the housing and at least partially encompassed by the pushbutton. The rocker is supported on an inner surface of a longitudinally extending side wall of the housing by at least one pivot bearing to be pivotable relative to the housing. The electrical switching element is adjacent to the rocker. In response to the pushbutton being displaced relative to the housing upon a pressure actuation onto the actuating surface, the rocker pivots relative to the housing thus triggering the electrical switching element and while the rocker pivots the rocker supports the pushbutton over a longitudinal extension of the pushbutton thereby preventing the pushbutton from tilting.
The laterally extending side walls of the pushbutton have guide ribs (or guide grooves) which cooperate respectively with guide grooves (or guide ribs) of laterally extending side walls of the housing to form respective linear guides. The pushbutton is displaceable connected to the housing via the linear guides such that the pushbutton displaces along the linear guides relative to the housing upon a pressure actuation onto the actuating surface.
The rocker may have a contact edge. In this case, the pushbutton contacts the rocker along the contact edge; and the contact edge of the rocker is configured such that when the rocker pivots the rocker supports via the contact edge the pushbutton over the longitudinal extension of the pushbutton thereby preventing the pushbutton from tilting.
The rocker may have at least two contact sites situated along a connecting line in parallel to a direction of the longitudinal extension of the pushbutton. In this case, the pushbutton contacts the rocker along the contact sites; and the contact sites of the rocker are configured such that when the rocker pivots the rocker supports via the contact sites the pushbutton over the longitudinal extension of the pushbutton thereby preventing the pushbutton from tilting.
The rocker has two contact sites situated on the upper longitudinal edge of the rocker facing away from the at least one pivot bearing and along a connecting line in parallel to a direction of the longitudinal extension of the pushbutton. In this case, the pushbutton contacts the rocker along the contact sites; and the contact sites of the rocker are configured such that when the rocker pivots the rocker supports via the contact sites the pushbutton over the longitudinal extension of the pushbutton thereby preventing the pushbutton from tilting.
The contact sites may be elevated protrusions.
The pushbutton may further include one of a positioning groove and a positioning rib on one of the longitudinally extending side walls of the pushbutton.
An embodiment provides an electric pushbutton switch. The pushbutton switch includes a pushbutton, a rocker, and a housing. The pushbutton includes a pushbutton body and a pushbutton cap or cover. The pushbutton cap and the pushbutton body are connected to assemble the pushbutton. The pushbutton has an overall box-like shape with a substantially rectangular actuating surface. The pushbutton cap forms the actuating surface. The housing is rectangular, box-shaped. The pushbutton is received within the housing. The pushbutton is displaceable connected to the housing to be displaceable with respect to (or against) the housing. The pushbutton displaces with respect to the housing by way of a pressure actuation onto the actuating surface of the pushbutton cap, thus triggering an electrical switching element.
The rocker is box-shaped. The rocker is arranged within the housing beneath the pushbutton body and is at least partially encompassed by the pushbutton body. The rocker is mounted on an inner longitudinally extending wall of the housing by a pivot bearing(s). By actuating the actuating surface of the pushbutton cap, the rocker pivots about the pivot bearing while supporting the pushbutton almost along the entire longitudinal extension of the pushbutton.
Another embodiment provides an operating element having an electric pushbutton switch such as the pushbutton switch.
In embodiments, an electric pushbutton switch includes a pushbutton, a rocker, and a housing. The rocker is situated beneath the pushbutton and is supported on an inner longitudinal wall of the housing by at least one pivot bearing. The rocker is pivotable about the at least one pivot bearing by actuating the pushbutton with the pushbutton being supported over substantially its entire longitudinal extension.
In an embodiment, the pushbutton formed by the pushbutton cap and the pushbutton body has a rectangular, semi box-like shape with the pushbutton cap forming a rectangular actuating surface. The rectangular shape of the pushbutton includes two long length sides and two short width sides. The overall or entire length or the pushbutton (i.e., the longitudinal extension of the pushbutton) is the length of a length side.
The rocker is box-shaped having a length and a width that substantially correspond to the dimensions of the pushbutton. The rocker can therefore support the pushbutton over substantially the entire length of the pushbutton. The feature “substantially” (or “approximately”) results from the rocker being situated beneath the pushbutton body and overlapped by the two side walls of the pushbutton body. The two sides walls of the pushbutton body respectively correspond to the two short width sides of the pushbutton. The side walls of the pushbutton body which overlap the rocker include guide ribs (or, alternately, guide grooves). The longitudinal extension of the rocker is therefore shorter than the longitudinal extension of the pushbutton by the magnitude of the thickness of the two side walls of the pushbutton body. The support for the pushbutton does not result in a possible rotation axis in the transverse direction perpendicular to the longitudinal extension of the pushbutton, about which the pushbutton could tilt.
For support, the pushbutton body contacts the rocker either along a narrow contact edge in parallel to the direction of the longitudinal extension of the pushbutton or at two or more contact sites situated along a line in parallel to the direction of the longitudinal extension of the pushbutton. The length of the contact edge or the distance between the farthest apart contact sites preferably is the same or at least substantially the same as the length of the rocker. The contact sites between the rocker and the pushbutton body are therefore situated at the outermost ends of a longitudinal edge of the rocker. As a result, the pushbutton is supported over virtually its entire length by the rocker and tilting of the pushbutton is reliably prevented.
In an embodiment, each pivot bearing pivotably supporting the rocker to the housing is provided by a respective film hinge.
In an embodiment, an operating element includes the pushbutton switch as a control element having multiple capacitive sensors. Sensor fields of the capacitive sensors are situated along the surface of the pushbutton cap. A capacitive sensor field is lightly touched to preselect a switching function, which is confirmed and thus triggered by pressing the pushbutton. An actuating pressure is usually applied to the partial surface of the pushbutton cap which was previously touched for selecting the function. Since different actuation sites may be selected, depending on the situation, it is advantageous that the same movement of the pushbutton, and thus the same switch feel, always results regardless of the actuation site.
Functional principles and exemplary embodiments of an electric pushbutton switch and an operating element having an electric pushbutton switch are explained in greater detail below with reference to the drawings, which show the following:
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to
Pushbutton body 9 is semi box-like and has a relatively long longitudinal extension (i.e., length) and a relatively short lateral extension (i.e., width). Pushbutton body 9 extends through an opening of housing 3 and is received within housing 3. Pushbutton body 9 is displaceable with respect to housing 3.
Pushbutton body 9 has side walls 25 on its width sides. Side walls 25 include integrally molded guide ribs 6. Housing 3 includes guide grooves 7. Guide grooves 7 are molded onto inner walls of housing 3.
Referring now to
Referring now back to
Rocker 2 is substantially box-shaped. Rocker 2 is slightly shorter in length and narrower in width than pushbutton body 9. Rocker 2 is arranged beneath pushbutton body 9 and is arranged within housing 3. Side walls 25 of pushbutton body 9 overlap rocker 2. In this installed state, rocker 2 is mounted on an inner longitudinally extending wall (i.e., on one of the two length walls (sides) of housing 3). Rocker 2 is mounted on the inner surface of the inner longitudinally extending wall of housing 3 by two pivot bearings 8. Rocker 2 is pivotable about pivot bearings 8.
Rocker 2 includes two film hinges 19 molded on the outer surface of a length wall of rocker 2. This length wall of rocker 2 faces the inner longitudinally extending wall of housing 3. Housing 3 includes two guide tracks 20 mounted on the inner surface of the inner longitudinally extending wall of housing 3. Film hinges 19 of rocker 2 are respectively pushed into guide tracks 20 of housing 3. Film hinges 19 of rocker 2 fastened in this way to guide tracks 20 of housing 3 respectively form the two pivot bearings 8, about which rocker 2 is pivotable. As such, each pivot bearing 8 is formed by a respective film hinge 19 of rocker 2 and a respective guide track 20 of housing 3.
The bottom side of pushbutton body 9 rests against rocker 2 at two or more contact sites 22. Contact sites 22 are situated on a single connecting line. If more than two contact sites 22 are provided, then all of the contact sites are situated on a single connecting line so that the connecting lines of the contact sites do not span an area between pushbutton 1 and rocker 2. Namely, if pushbutton body 9 rested flatly against rocker 2, then pushbutton 1 could not bring about pivoting of rocker 2. This is because in this case pushbutton 1 itself would have to undergo a tilting movement which is not desirable and is precluded by linear guides A and B.
Contact sites 22 are illustrated by two protrusions molded onto the top side of rocker 2. These two protrusions 22, unlike what is shown in
Alternatively, contact sites 22, or the contact edge (not shown), may be mounted on the bottom side of pushbutton body 9. Contact sites 22 are thus fixedly molded on, either to rocker 2 or to pushbutton 1, and rest lightly against the respective counterpart 1, 2, which allows pivoting of rocker 2 when pushbutton 1 undergoes a displacement movement along linear guides A and B.
In
The front longitudinal wall of rocker 2 includes a projection 17. Projection 17 is supported on a switching element 5 and triggers switching element 5 when rocker 2 pivots. Switching element 5, for example, a switch dome of a silicone safety mat, a snap disk, a short-stroke pushbutton, etc., allows pressure actuation over a relatively short actuating path. Switching element 5 either has an elastic design or has a spring and thus generates a restoring force which acts on rocker 2 under the action of pressure.
Switching element 5 is fastened to a printed circuit board (PCB) 4 via which the electrical connection of switching element 5 is established. Triggering of switching element 5 by an action of pressure closes or opens an electrical contact.
With regard to the coordinate axes x, y, z depicted in the FIGS., linear guides A and B position the location of pushbutton 1 with respect to the y axis, and at the same time prevent pushbutton 1 from twisting about the x axis and about the vertical axis z. A positioning groove 23 molded onto a longitudinal side of housing 3 and a positioning rib 24 molded onto pushbutton body 9 which engages with positioning groove 23, also prevent displacements of pushbutton body 9 along the x axis.
Due to the solid rocker 2 pivotably supported on housing 3, pushbutton 1 is supported over approximately its entire length in each actuation phase. Rocker 2 tilts about its pivot bearing(s) 8 a small distance about the x axis and at the same time moves downwardly in the z direction, but does not rotate about the y axis. As such, pushbutton 1 supported on rocker 2 likewise is not able to pivot about the y axis. During an actuation, pushbutton 1 thus moves downwardly in the z direction precisely in parallel to the walls of housing 3, regardless of the particular location at which the actuating pressure acts on actuating surface 21 of pushbutton 1.
Referring now to
Touching one of the sensor fields 13 allows one of multiple functions to be preselected. This is then confirmed and thus triggered by pressure actuation of pushbutton 1. Pushbutton 1 is generally pressed at the location at which sensor field 13 associated with the function selected at that moment is also present. In order to obtain an actuation feel when pushbutton 1 is pressed, which is independent of the particular function selection, it is desirable for the actuation haptics to be independent from the actuation site of pushbutton 1. This is achieved by the design according to the exemplary embodiments of the pushbutton switch.
Sensor fields 13 situated on pushbutton cap 10 may have an illuminable design for displaying the function that is preselected or triggered by actuating pushbutton 1. For this purpose, four lighting elements (e.g., LEDs) 14, corresponding to the amount of sensor fields 13 provided on pushbutton 1, are situated on PCB 4. A recess 18 is introduced into the top side of pushbutton body 9 in the longitudinal direction to allow the light from lighting elements 14 to reach pushbutton cap 10. Rocker 2 has multiple dividing walls 15. Dividing walls 15 form multiple chambers 16 within rocker 2 which are open at the top and bottom. Dividing walls 15 take over the function of a diaphragm in order to limit the light from lighting elements 14 in each case to the area of individual associated sensor fields 13. Dividing walls 15 also provide reinforcement, and thus a relatively more stable design, of rocker 2.
List of Reference Numerals
1 Pushbutton
2 Rocker
3 Housing
4 Circuit carrier (printed circuit board)
5 Switching element
6 Guide ribs
7 Guide grooves
8 Pivot bearing
9 Pushbutton body
10 Pushbutton cap
11 Locking tabs
12 Locking latches
13 Sensor fields
14 Lighting elements
15 Dividing walls
16 Chambers
17 Projection
18 Recess
19 Film hinge
20 Guide tracks
21 Actuating surface
22 Contact sites (protrusions)
23 Positioning groove
24 Positioning rib
25 Side walls
A, B Linear guides
L Longitudinal extension
S Distance
x, y, z (Coordinate) axes
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the present invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the present invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 005 123.4 | Apr 2014 | DE | national |
This application is a continuation of International Application No. PCT/EP2015/057249, published in German, with an International filing date of Apr. 1, 2015, which claims priority to DE 10 2014 005 123.4, filed Apr. 8, 2014; the disclosures of which are hereby incorporated in their entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2015/057249 | Apr 2015 | US |
Child | 15267204 | US |