This application is a US Utility Patent Application, and claims priority to French Patent Application Number 09/50197 filed Jan. 15, 2009.
The present invention relates to an electric rotating machine, reversible or otherwise, more particularly a starter of an automotive vehicle.
Electric rotating machines comprise an armature rotor and an inductive stator mounted in coaxial fashion, the stator surrounding the rotor. The rotor is integral with a drive shaft rotating inside a yoke. The stator has a plurality of magnetic poles disposed on an internal circumferential surface of a yoke and made up of salient poles around which are wound inductive wires, the unit constituting a wire wound inductor. The rotor, placed at the centre of the stator, comprises armature wires wound in notches.
The inductive poles of the stator generally have “shoes”, that is to say lateral extensions at their apex as on a capital letter T.
Wire wound inductors are particularly prone to a strong armature reaction due to their polar parts, this effect being much more pronounced than in the case of an inductor with permanent magnets. Indeed, salient poles contribute to amplifying the induction resulting from the magnetomotive force of the armature and their shoes reinforce the deformation effect of the induction lines due to the inductor, by providing a path and a material preferential for the induction lines due to the armature, these being perpendicular to those of the inductor at this point. This leads to the armature reaction effects being amplified, whereas usually the aim is to reduce them.
The object of the invention is to reduce the armature reaction effects by rendering ferromagnetic parts anisotropic, that is to say by ensuring that their permeance is substantially higher in the direction parallel to the axis of the inductor than in the direction which is transverse thereto, and this thanks to one or several slots or notches. This object is thus achieved on a DC electric rotating machine, such as a starter of an automotive vehicle, and which includes:
According to another feature, the slot contains a magnet, known as compensation magnet; it is magnetized in a transverse way, either perpendicularly to the radius of the machine or transversally to the direction of the inductive flux. The insertion of a permanent magnet does not disturb the primary flux or inductive flux, but weakens the armature reaction flux because the magnet is magnetized in a transverse way relative to the inductive flux and oriented in the opposite direction to the armature field; moreover the magnetized zone represents an air-gap for the armature field because the magnet has very low permeability compared to a ferromagnetic material. The drawbacks due to the magnetic armature reaction are therefore reduced, notably distortion of the magnetic waveforms in the air-gap, shift of the neutral line, degradation of the switching condition, increase in iron losses and drop of performance in the event of saturation, which is localized on only one side of each pole, whereas the other sees its magnetic material under-utilized.
The preferred position of the magnet is the middle of the polar part of the inductor in a slot parallel to the axis of rotation and to the axis of the inductive flux of each pole. This solution, under certain circumstances, advantageously replaces traditional means such as the compensatory windings used in bulkier machines.
According to a particular embodiment, a remanent induction magnet with approximately 1 T (Tesla) preferably has a height substantially equal to the remaining thickness of the stator at right angles to the slot. Thus, if the slot is deeper than the height of the magnet, the height of the magnet preferably will be roughly the same as the height of the stator between the bottom of the slot and the outside of the stator. According to the type of magnet selected (ferrite with approximately 0.35 T or rare earths, for example NdFeB neodymium-iron-boron with 1.1 T of remanent induction) the height of the magnet will be different compared to the thickness of the stator at right angles to the slot; it will be three times greater for a ferrite magnet with 0.35 T. In an exemplary embodiment, the magnet is placed in the centre of the salient pole and there is only one notch. It is possible to use several magnets, but in this case their height will be less than if there is only one of these. The height of a single magnet Ha is substantially equal to the sum of the heights of magnets Hn with the number of n: Ha=nHn. The height of a magnet is a function of the thickness of ferromagnetic material present around said magnet in the polar core, the height of said magnet being substantially equal to the circumferential thickness of the polar core in the direction of the magnetic field of the armature.
According to a particular embodiment, two geometrically opposed salient poles are consecutive poles. The consecutive poles enable active material to be saved as the quantity of copper used or permanent magnets is reduced. The savings in copper can reach 50% at least for the inductor.
According to a particular feature, the consecutive poles comprise at least two slots. The consecutive poles can have more slots than the salient poles since, with no inductive spirals to be installed, poles without shoes of a constant width equal to the maximum total width of the salient poles with shoes, can be used. This enables the anisotropic character to be increased and the armature reaction effects to be better counteracted. The slots then constitute notches.
According to an alternative, the consecutive poles comprise at least one magnet at the apex of a slot, that is to say nearest the air-gap. If there is only one magnet, preferably its position is central.
According to another alternative, the salient pole has at least two slots and each slot contains a small-sized magnet. The size of the magnet will be all the smaller, the more magnets that are disposed over the circumference of the pole, since the height of said magnet is substantially equal to the thickness of the adjacent teeth.
The use of Kapton® film produced by Dupont de Nemours can be considered for the armature notches as insulation against the rotor for engines subject to high temperature (up to 400° C.). This film being very thin, it is particularly suitable for starters having high output as it enables the filling of the notches to be improved and/or the thickness of the teeth to be increased for the same cross-section of copper per armature notch. As the thickness of Kapton® film ranges between 7.6 μm and 19 μm instead of 0.5 to 3 mm for traditional paper insulation for conductors, whose smallest dimension is about 1 mm, there is more space for the conductor of the winding in the same notch or, for the same winding, smaller notches and thus broader teeth can be used, which is beneficial to the magnetic torque.
The electric machine can be reversible.
The magnetic material of the body of the stator can be ferromagnetic.
The invention will be better understood on reading the following description, given purely as an example, with reference to the appended drawings in which:
a illustrates the detail of a salient pole according to the prior art,
a shows the detail of a slot with magnet,
a shows a consecutive pole with more than 2 notches,
b shows a slot wedge,
a details a slot with magnet,
Illustrated on
This stator 3 comprises a yoke 4 carrying a wound structure 50 with excitation by electric coils forming an inductive winding 51.
Inductive winding 51, on either side of stator body 52, forms a front coil end 51 and a rear coil end 53.
Rotor 2 comprises a rotor body 7 and a winding 8 wound in notches of the rotor body 7. Winding 8, on either side of rotor body 7, forms a front coil end 9 and a rear coil end 10.
Rotor 2, at the rear, is provided with a collector 12 including a plurality of contactors electrically connected to the conductive elements, formed by wires in the example considered, of winding 8.
A set of brushes 13 and 14 is provided for the electric supply of winding 8, one of brushes 13 being connected to the earth of starter 1 and another of brushes 14 being connected to an electric terminal 15 of a contactor 17 via a wire 16. The brushes are four as an example.
Brushes 13 and 14 come to rub on collector 12 when rotor 2 is in rotation, allowing the electric supply of rotor 2 by switching the electric current in sections of rotor 2.
Starter 1 also comprises a starter drive assembly 19 mounted in a sliding way on a drive shaft 18 and capable of being set in rotation around the X axis by rotor 2.
A reduction gear unit 20 is intermediate between rotor 2 and the drive shaft 18 in a way known per se.
Starter drive assembly 19 comprises a drive element formed by a pulley 21 and designed to engage on a drive body of the internal combustion engine, not illustrated. This drive body is a belt for example.
Pulley 21 can be replaced by a gear element, in particular a toothed wheel, to turn the internal combustion engine.
Starter drive assembly 19 also comprises a free wheel 22 and a disc pulley 23 between them defining a groove 24 to receive end 25 of a fork 27.
This fork 27 is made for example by moulding a plastic material.
Fork 27 is actuated by contactor 17 to move starter drive assembly 19 relative to drive shaft 18, along the X axis, between a first position, in which starter drive assembly 19 turns the internal combustion engine via pulley 21 and a second position, in which starter drive assembly 19 is disengaged from the internal combustion engine.
Contactor 17, in addition to terminal 15 connected to brush 14, comprises a terminal 29 connected via an electric connection element, more particularly a wire 28, to an electric supply of the vehicle, notably a battery.
As evident from
This polar core 31 comprises a pole shoe 32 which extends it towards a rotor 2.
Rotor 2 comprises an armature winding 8.
Salient poles 30 of the prior art experience heavy saturation due to the armature reaction. This saturation is localized on only one side of the pole in the circumferential direction.
a shows a third embodiment comprising a stator 3 with two not-wound poles constituting consecutive poles 40 enclosed by two wound salient poles 30, it being possible to have only one consecutive pole 40 on rotor 3. The wound salient poles 30 and the consecutive poles 40 are distributed uniformly over the circumference of the stator 3. If there are several consecutive poles 30 these preferably all have the same electrical polarity; on
b illustrates an alternative to the previous embodiment, wherein slots 41 of consecutive poles 40 are closed by slot wedges 42.
Salient pole 30 on
Number | Date | Country | Kind |
---|---|---|---|
09 50197 | Jan 2009 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
2811658 | Brainard | Oct 1957 | A |
3296472 | Fisher | Jan 1967 | A |
4011479 | Volkrodt | Mar 1977 | A |
4217513 | Kohzai et al. | Aug 1980 | A |
4516046 | Mercier | May 1985 | A |
5015905 | Koharagi et al. | May 1991 | A |
5045742 | Armstrong et al. | Sep 1991 | A |
5218250 | Nakagawa | Jun 1993 | A |
5444318 | Stumpf | Aug 1995 | A |
5552686 | Schmid et al. | Sep 1996 | A |
6847143 | Akemakou | Jan 2005 | B1 |
6960858 | Kawai | Nov 2005 | B2 |
7116018 | Strobl | Oct 2006 | B2 |
7166984 | Jones et al. | Jan 2007 | B1 |
20070222304 | Jajtic et al. | Sep 2007 | A1 |
20080185932 | Jajtic et al. | Aug 2008 | A1 |
20090152956 | Yang | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
19510729 | Sep 1996 | DE |
1157452 | May 1958 | FR |
2091357 | Jan 1972 | FR |
147812 | Oct 1921 | GB |
58119760 | Jul 1983 | JP |
2002199679 | Jul 2002 | JP |
Entry |
---|
Machine Translation, JP 2002199679 A, Jul. 12, 2002. |
USPTO Translation, JP 58119760 A, Two-Phase Transistor Motor, Jul. 16, 1983. |
Oxford English Dictionary, Definition of the term “Transverse”, pp. 1-7, Oct. 3, 2013. |
Number | Date | Country | |
---|---|---|---|
20100176677 A1 | Jul 2010 | US |