This application is based upon and claims the benefit of priority from prior Japanese patent application No. 2020-080670, filed on Apr. 30, 2020, the entire contents of which are incorporated herein by reference.
The present invention relates to an electric stapler that binds a paper bundle with a staple, a post-processing device on which the electric stapler is mounted, and an image forming system including the post-processing device.
in an image forming system, which includes an image forming device using an electrophotographic technique and a post-processing device, the post-processing device may be equipped with an electric stapler that binds a paper bundle with a staple.
In the electric stapler, striking capability varies depending on a rotation start position of a motor at the start of binding processing. For example, when the rotation start position of the motor at the start of the binding processing passes a desired rotation start position, a driver that drives a staple may be close to the paper bundle and the motor may not be accelerated until the staple reaches the paper bundle.
In the electric stapler, a rotational position of the motor is acquired by detecting a rotational position of a gear driven by the motor with a home position sensor, and when it is detected that the motor or the gear reaches a predetermined rotational position, braking is started, and the motor and the gear are controlled to stop at a desired rotational position. However, a position at which the motor is actually stopped is not constant due to disturbance caused by variation in a power supply voltage, a motor characteristic, the number of sheets of paper, paper quality, an external environment such as temperature and humidity, and variation in a mechanical load or the like.
On the other hand, Patent Literature 1 discloses a technique in which a motor (gear) is decelerated from a state in which a rotational position of the motor is before a detection position of a home position sensor, and the motor is stopped after being decelerated, so that the motor is stopped at a desired rotation stop position.
Patent Literature 1: Japanese Patent No. 5428515
However, in the configuration in which the motor (gear) is decelerated from the state in which the rotational position of the motor is before the detection position of the home position sensor, time until stop of the motor due to the deceleration is increased, and as a result, binding processing time is increased.
It is therefore an exemplary object of the present invention to provide an electric stapler that is capable of keeping constant a stop position of a rotating body such as a motor or a gear driven by the motor (stopping the rotating body at a desired position) without increasing binding processing time. In addition, it is an exemplary object to provide a post-processing device on which such an electric stapler is mounted, and an image forming system including the post-processing device.
According to an aspect of the present invention, an electric stapler including a clamp part that clamps a paper bundle, a penetration part that causes a staple to penetrate the paper bundle, a clinch part that bends the staple penetrating the paper bundle to bind the paper bundle, and a motor that drives the clamp part, the penetration part, and the clinch part, and performing binding processing accompanying rotation of the motor by sequentially performing a clamping process of clamping the paper bundle with the clinch part, a penetrating process of causing the staple to penetrate the paper bundle with the penetration part, and a clinching process of bending the staple penetrating the paper bundle with the clinch part, includes: a first position detection unit that detects that a rotational position of the motor passes a first position; a braking unit that applies braking to the motor after it is detected that the motor passes the first position; a difference calculation unit that calculates a difference between a position at which the motor is stopped by the braking unit and a predetermined stop target position of the motor; and a motor control unit that moves a rotational position of the motor to the stop target position by rotating the motor forward or in reverse by the calculated difference.
In the above-described electric stapler, a difference between a position at which the motor is stopped and a predetermined stop target position of the motor is calculated, and the motor is rotated forward or in reverse by the calculated difference, whereby the stop position of the motor is adjusted to the stop target position.
An electric stapler including a clamp part that clamps a paper bundle, a penetration part that causes a staple to penetrate the paper bundle, a clinch part that bends the staple penetrating the paper bundle to bind the paper bundle, and a motor that drives the clamp part, the penetration part, and the clinch part, and performing binding processing accompanying rotation of the motor by sequentially performing a clamping process of clamping the paper bundle with the clinch part, a penetrating process of causing the staple to penetrate the paper bundle with the penetration part, and a clinching process of bending the staple penetrating the paper bundle with the clinch part, includes: a first position detection unit that detects that a rotational position of the motor passes a first position; a deceleration unit that reduces a rotational speed of the motor after it is detected that the motor passes the first position; a rotation amount detection unit that detects a rotation amount of the motor since a start of deceleration of the motor; and a braking unit that applies braking to the motor when it is detected that the rotation amount reaches a predetermined value.
In the above-described electric stapler, when a rotational position of the motor passes a first position that is a target position at which the motor starts to decelerate, a rotational speed of the motor is reduced, and when a rotation amount of the motor since the start of the deceleration reaches a predetermined value, the motor is stopped, whereby the stop position of the motor is adjusted to the stop target position.
According to the above-described electric stapler, it is possible to adjust a stop position of a motor to a stop target position.
Hereinafter, embodiments of an electric stapler, a post-processing device on which the electric stapler is mounted, and an image forming system including the post-processing device according to the present invention will be described with reference to the drawings.
An electric stapler 1A includes a clamp part 2 that clamps a paper bundle P, a penetration part 3 that causes a staple 10 to penetrate the paper bundle P, and a clinch part 4 that bends the staple 10 penetrating the paper bundle P to bind the paper bundle P. In addition, the electric stapler 1A includes a motor 5 that drives the clamp part 2, the penetration part 3, and the clinch part 4.
The electric stapler 1A includes a striking unit 30 in which the penetration part 3 is provided, and a binding unit 40 in which the clinch part 4 is provided.
The clamp part 2 includes a first wall portion 21 and a second wall portion 22 that face each other with a predetermined gap therebetween. In the clamp part 2, the first wall portion 21 is formed at a portion facing the striking unit 30 of the binding unit 40. Further, in the clamp part 2, the second wall portion 22 is formed at a portion facing the binding unit 40 of the striking unit 30.
In the electric stapler 1A, the binding unit 40 moves in directions of approaching and separating from the striking unit 30 by a rotating operation with a shaft 31 serving as a fulcrum.
Accordingly, in the clamp part 2, the first wall portion 21 moves in directions of approaching and separating from the second wall portion 22. The clamp part 2 sandwiches the paper bundle P between the first wall portion 21 and the second wall portion 22 when the first wall portion 21 is moved in a direction of approaching the second wall portion 22. When the first wall portion 21 moves in a direction of separating from the second wall portion 22, the paper bundle P sandwiched between the first wall portion 21 and the second wall portion 22 is released.
A cartridge 100, in which the staples 10 are accommodated in a connected state, is detachably attached to the striking unit 30. The penetration part 3 separates one leading staple of the staples 10 accommodated in the cartridge 100, and strikes the staple 10 toward the paper bundle P sandwiched between the first wall portion 21 and the second wall portion 22 to penetrate the paper bundle P. The penetration part 3 may include a movable part movable between a first position and a second position. The second position is apart from the first position in the direction orthogonal to a surface of the paper bundle.
The striking unit 30 includes a mechanism that feeds the staple 10 accommodated in the cartridge 100 to a position where the staple 10 can be struck by the penetration part 3. In addition, the striking unit 30 includes a mechanism that forms the staple 10 into a U shape, with the staples in a form of being connected in a sheet shape and accommodated in the cartridge 100 for supply.
The clinch part 4 bends the staple 10 penetrating the paper bundle P sandwiched between the first wall portion 21 and the second wall portion 22 in a predetermined direction. The binding unit 40 may include a mechanism that cuts legs of the staple 10 penetrating the paper bundle P. The clinch part 4 may include a contact surface which comes into contact with the staple 10 to bend the staple 10.
In the driving unit 50, rotation of a motor shaft 5a of the motor 5 is transmitted to the driven gear 51 via the intermediate gear 52, and the driven gear 51 rotates. When rotation of the driven gear 51 is transmitted to a cam or the like (not illustrated), the driving unit 50 moves the binding unit 40 in directions of approaching and separating from the striking unit 30, and opens and closes the clamp part 2. In addition, the driving unit 50 drives the penetration part 3 and the clinch part 4 by transmitting the rotation of the driven gear 51 to a cam or the like (not illustrated).
In the electric stapler 1A, in an operation of the driven gear 51 rotating in one direction, the binding unit 40 moves in a direction of approaching the striking unit 30, and the paper bundle P is clamped by the clamp part 2.
Then, in the operation of the driven gear 51 further rotating in the one direction, the staples 10 accommodated in the cartridge 100 are fed out, and one leading staple 10 of the fed-out staples 10 is struck by the penetration part 3 toward the paper bundle P clamped by the clamp part 2 to penetrate the paper bundle P.
Further, in the operation of the driven gear 51 rotating in the one direction, the staple 10 penetrating the paper bundle P is bent by the clinch part 4. When the driven gear 51 further rotates in the one direction, the binding unit 40 moves in a direction of separating from the striking unit 30, and clamping of the paper bundle P by the clamp part 2 is released.
As described above, in the operation of the driven gear 51 rotating in one direction, the electric stapler 1A performs a clamping process of clamping the paper bundle P with the clamp part 2, a penetrating process of striking the staple 10 into the paper bundle P with the penetration part 3, a clinching process of bending the staple 10 with the clinch part 4, and a returning process of releasing the paper bundle P clamped by the clamp part 2.
Next, a configuration for detecting positions and rotation amounts of the motor 5 and the driven gear 51 in a rotation direction will be described.
In the electric stapler 1A, a position along a rotation direction of the motor shaft 5a of the motor 5 is referred to as a rotational position of the motor 5. In addition, a position along a rotation direction of the driven gear 51 is referred to as a rotational position of the driven gear 51.
In the driving unit 50, the driven gear 51 meshes with the intermediate gear 52 and the intermediate gear 52 meshes with a gear (not illustrated) of the motor shaft 5a, and thus a rotational speed of the driven gear 51 is a value obtained by reducing a rotational speed of the motor 5 at a predetermined reduction ratio. Accordingly, a rotational position and a rotation amount of the driven gear 51 are proportional to a rotational position and a rotation amount of the motor 5.
Therefore, a home position sensor 101 (first position detection unit/first position detector) that detects a predetermined rotational position of the driven gear 51 is provided for the rotational positions of the motor 5 and the driven gear 51. With respect to the rotation amounts of the motor 5 and the driven gear 51, the rotation amount of the motor 5 is detected based on an output of a magnetic sensor 102 (rotation amount detection unit) used for detecting a position of a rotor (not illustrated) of the motor 5 that is configured with a brushless motor.
In the electric stapler 1A, the home position sensor 101 detects the rotational position of the driven gear 51 in order to cause the clamp part 2, the penetration part 3, and the clinch part 4 to standby at a predetermined home position.
In the electric stapler 1A, a stop target range SE is set to a predetermined range in a circumferential direction of the driven gear 51 in order to stop the rotational position of the driven gear 51 at a predetermined position when stopping driving of the motor 5.
The electric stapler 1A is configured such that an output of the home position sensor 101 changes from 0 (OFF) to 1 (ON), for example, when a stop target range start-point position PS (first position), which is a start-point of the stop target range SE, reaches a detection position P101 of the home position sensor 101 with respect to rotation of the driven gear 51 in a forward direction indicated by an arrow F.
Further, the electric stapler 1A is configured such that the output of the home position sensor 101 changes from 1 (ON) to 0 (OFF), for example, when a stop target range end-point position PE, which is an end-point of the stop target range SE, reaches the detection position P101 of the home position sensor 101 with respect to the rotation of the driven gear 51 in the forward direction indicated by the arrow F.
Accordingly, the electric stapler 1A is configured such that the home position sensor 101 can detect the stop target range SE of the driven gear 51.
In the electric stapler 1A, a stop target position P1 of the driven gear 51 is set within the stop target range SE, and in this example, the stop target position P1 is almost set at a central position of the stop target range SE as illustrated in
In the electric stapler 1A, when the driven gear 51 is rotated in the forward direction indicated by the arrow F by forward rotation of the motor 5 from a state where the stop target position P1 of the driven gear 51 is located at the detection position P101 of the home position sensor 101, the stop target range end-point position PE reaches the detection position P101 of the home position sensor 101.
With respect to the rotation of the driven gear 51 in the forward direction indicated by the arrow F, a predetermined range from the stop target range end-point position PE is set as a clamp range CL in which clamping of the paper bundle P by the clamp part 2 is performed in the clamping process. Further, following the clamp range CL, a penetration range TH is set in which the staple 10 is struck into the paper bundle P by the penetration part 3 in the penetrating process. Following the penetration range TH, a clinch range of the clinching process is set, and following the clinch range, a clamp release range of the returning process is set, met by the stop target range start-point position PS.
The control unit 110 (implementing a braking unit, a difference calculation unit, a motor control unit, and a deceleration unit) includes a CPU 110a, and executes a program stored in a storage unit 110b to perform the binding processing of the electric stapler 1A. The motor driving unit 111 drives the motor 5 by known PWM control based on position information of a rotor (not illustrated) output from the magnetic sensor 102.
The control unit 110 controls the stop position of the motor 5 based on the rotational position of the driven gear 51 detected by the home position sensor (HP sensor) 101 and based on the rotation amount of the motor 5 detected by the magnetic sensor 102, that is, the rotation amount of the driven gear 51.
In the electric stapler 1A, the CPU 110a of the control unit 110 illustrated in
When HP sensor ON is detected at (1) in
In a count section of a magnetic sensor pulse during braking of (2) in
The rotation amount of the motor 5 from when the home position sensor 101 detects the stop target range start-point position PS of the driven gear 51 to when the stop target position P1 of the driven gear 51 reaches the detection position P101 of the home position sensor 101 is determined. Then, the stop target position P1 is set at a position separated from the stop target range start-point position PS by a first distance (corresponding to 3 pulses in this example (illustrated example)). The rotation amount of the motor 5 from the detection of the stop target range start-point position PS of the driven gear 51 to the arrival of the stop target position P1 of the driven gear 51 at the detection position P101 of the home position sensor 101 is referred to as a stop rotation amount D2.
When it is determined that the motor 5 is stopped in step SA4 of
When it is determined that the stop target position P1 of the driven gear 51 passes the detection position P101 of the home position sensor 101, the control unit 110 causes the motor 5 to rotate in reverse at a predetermined low speed in step SA7 of
When the rotation amount information D3 counted in the count section of the magnetic sensor pulse during the reverse rotation of the motor 5 in (5) of
In the electric stapler 1A, when the stop target position P1 of the driven gear 51 is stopped after passing the detection position P101 of the home position sensor 101, a rotation amount of the driven gear 51 from the start of the rotation of the driven gear 51 to the arrival at the penetration range TH is reduced when performing a binding operation of the paper bundle P subsequently. In such a case, there is a situation where the motor 5 cannot be sufficiently accelerated before the staple 10 reaches the paper bundle P, and in that case, there is a possibility that the striking capability is decreased.
On the other hand, by locating the stop target position P1 of the driven gear 51 at the detection position P101 of the home position sensor 101 and stopping the rotation of the motor 5, it is possible to secure the rotation amount of the driven gear 51 from the start of the rotation of the driven gear 51 to the arrival at the penetration range TH when performing the binding operation of the paper bundle P subsequently. Accordingly, it is possible to sufficiently accelerate the motor 5 before the staple 10 reaches the paper bundle P, and it is possible to prevent a decrease or variation in the striking capability.
When the rotation amount information D1 is less than the stop rotation amount D2, the stop target position P1 of the driven gear 51 does not reach the detection position P101 of the home position sensor 101.
When it is determined in step SA8 of
In step SA10 of
As described above, according to the first operation example, when the stop target position P1 of the driven gear 51 goes beyond (passes) the detection position P101 of the home position sensor 101 and stops, the driven gear 51 is moved backward (rotated in reverse) by an amount corresponding to an excess, and when the stop target position P1 is short of (does not reach) the detection position P101 and stops, the driven gear 51 is moved forward (rotated forward) by an amount corresponding to a shortfall, so that the stop target position P1 can be located at the detection position P101 that is a desired stop position. As described, the braking is applied to the motor 5 before reaching the detection position P101 (stop target range start-point position (first position) PS). Further, when the motor 5 (driven gear 51) goes beyond the desired position and stops, the motor 5 is moved backward by an amount corresponding to an excess, and when the motor 5 stops without reaching the desired position, the motor 5 is moved forward by an amount corresponding to a shortfall. Thus it is possible to accelerate the processing as compared with a case where the motor 5 is decelerated and stopped before the detection position P101.
When the HP sensor ON is detected at (0) in
In step SB3 of
When the control unit 110 determines that the motor 5 is stopped in step SB4 of
When it is determined that the stop target position P1 of the driven gear 51 goes beyond the detection position P101 of the home position sensor 101, the control unit 110 causes the motor 5 to rotate in reverse at a predetermined low speed in step SB6 of
When the rotation amount information D3 counted in the count section of the magnetic sensor pulse during the reverse rotation of the motor 5 in (5) of
When the HP sensor ON is detected at (1) of
When the HP sensor OFF is detected at (2) of
In a count section of a magnetic sensor pulse during braking of (3) in
When it is determined that the motor 5 is stopped in step SC6 of
When it is determined that the stop target position P1 of the driven gear 51 goes beyond the detection position P101 of the home position sensor 101, the control unit 110 causes the motor 5 to rotate in reverse at a predetermined low speed in step SC8 of
When the rotation amount information D3 counted in the count section of the magnetic sensor pulse during the reverse rotation of the motor 5 in (6) of
When the HP sensor ON is detected at (1) in
A rotation amount of the motor 5 from when the home position sensor 101 detects the stop target range start-point position PS of the driven gear 51 to when the stop target position P1 of the driven gear 51 reaches the detection position P101 of the home position sensor 101 is referred to as a stop rotation amount D5.
In a count section of a magnetic sensor pulse during low-speed forward rotation of (2) in
When the rotation amount information D1 counted in the count section of the magnetic sensor pulse during the low-speed forward rotation of (2) in
Number | Date | Country | Kind |
---|---|---|---|
2020-080670 | Apr 2020 | JP | national |