The present invention relates to an electric storage system.
A technology disclosed in Patent Document 1 is available as a background art relating to the present technical field.
Patent Document 1 proposes an electric storage system which uses both two types of batteries including a capacity-oriented battery and an instantaneous type battery. The capacity-oriented battery here represents a battery which has a large capacity although the current which can be supplied to the battery is low. On the other hand, the instantaneous type battery represents a battery which has a small capacity although the current which can be supplied to the battery is high.
Global warming is a serious problem to all mankind. In order to delay and halt the progress of global warning, promotion in energy efficiency mainly in the transport sector, utilization of new energy which does not involve emission of CO2, and so forth are proceeding.
A representative example of promotion in energy efficiency in the transport sector is a hybrid system. The hybrid system is a system which recovers regenerative power upon deceleration from a motor into a storage battery and discharges the power upon acceleration to assist driving thereby to use the energy in high efficiency. Since such acceleration and deceleration involve a sudden variation in the electric current, a high-output power characteristic in a short period of time is demanded. Further, as the energy density of the battery increases, the restriction to the installation area decreases, which leads to reduction in size and weight of the vehicle body. Therefore, the battery is demanded to have a high instantaneous output power density and a high capacity density.
Meanwhile, a storage battery is being spread widely in the new energy sector too. This is because since the generated power output of wind-power generation and solar power generation is not stable it is necessary to solve this problem. In particular, it is necessary to provide an electric storage system to the power generation facilities to smoothen the power variation to such level that the power variation does not have a negative influence on the power system and increase the interconnection capacity to the system. Further, if the capacity density of the battery increases the restriction in installation area decrease, making it easier to place the battery inside the power generation facilities.
From the foregoing, in promotion of new energy in the transport sector also in utilization of new energy from wind-power generation, solar power generation and so forth, an electric storage system which can output high output power in a short period of time and has a high capacity density.
In order to obtain an electric storage system which can output high output power in a short period of time and has a high capacity density, a system may be constructed from a capacity-oriented battery and an instantaneous type battery as in the electric storage system disclosed, for example, in Patent document 1.
However, the capacity-oriented battery undergoes sudden degradation if current higher than a prescribed level flows thereto. From such a situation as just described, where the capacity-oriented battery is used, for example, it is necessary to provide a switch in a charge and discharge path of the capacity-oriented battery so that current higher than a prescribed level may not flow to the capacity oriented battery. Such a method as just described uniquely limits the use of the capacity-oriented battery. Therefore, it is considered that the characteristic of the high capacity density of the capacity-oriented battery is not fully utilized and the electric storage system approaches a situation wherein it is composed only of the instantaneous type battery. As a result, it is considered that the number of instantaneous type batteries must be increased, leading to the electric storage system proportionately growing in size
It is a representative problem to be solved by a representative invention of the present application to achieve elongation of the life of an electric storage system which can output high output power in a short period of time and is high in capacity density.
When the electric storage system described above is provided, the system could be downsized preferably.
According to a first mode of the present invention, provided is an electric storage system including at least two types of electric storage cells, wherein a first electric storage unit configured from first electric storage cell and a second electric storage unit configured from a second electric storage cell are electrically connected to each other through a current controlling circuit.
According to a second mode of the present invention, provided is an electric storage system including at least three types of electric storage cells, wherein:
a first electric storage unit comprised from a first electric storage cell and a second electric storage unit comprised from a second electric storage cell are electrically connected to each other through a first current controlling circuit; and
the second electric storage unit and a third electric storage unit comprised from a third electric storage cell are electrically connected to each other through a second current controlling circuit.
According to a third mode of the present invention, in the first or second mode of the electric storage system, the current controlling circuit preferably consists of a voltage adjustment circuit which includes one of a step-up chopper, a step-down chopper, a step-up/down chopper, or a combination of a step-up chopper and a step-down chopper.
According to a fourth mode of the present invention, in the first or second mode of the electric storage system, the controlling circuit preferably consists of an impedance adjustment circuit.
According to a fifth mode of the present invention, in the fourth mode of the electric storage system, the impedance adjustment circuit should be a coil preferably.
According to a sixth mode of the present invention, provided is an electric storage system including:
a first storage unit comprised from a first electric storage cell;
a second storage unit comprised from a second electric storage cell which is different in type from the first electric storage cell; and
a current controlling circuit provided between the first storage unit and the second storage unit for electrically connecting the first storage unit and the second storage unit to each other to control input/output current amounts to and from the first storage unit and the second storage unit.
The current controlling circuit includes two switch circuits which control the ratio of the input/output current amounts to and from the first and the second storage unit by controlling on and off of the switch circuits.
With the representative inventions of the present application, since current to flow to the capacity-oriented battery can be suppressed, elongation of the life of the battery system can be achieved.
In the following, embodiments of the present invention are described with reference to the drawings.
A first embodiment of the present invention is described with reference to
First, a configuration of a battery system is described with reference to
The battery system of the present embodiment incorporates both of an instantaneous type battery 2 and a capacity-oriented battery 1. The batteries are electrically connected in parallel through a voltage adjustment circuit 6. Reference numeral 1 here corresponds to a capacity-oriented battery, 2 to an instantaneous type battery, 301 to switch 1, 302 to switch 2, 4 to a diode, and 6 to a voltage controlling circuit.
It is to be noted that the battery system includes a controller 101 controlling the switches 301 and 302.
Further, the battery system of the present embodiment is described taking a case in which a step-up/down chopper is used as the voltage adjustment circuit 6 as an example.
The voltage adjustment circuit 6 is provided between two battery groups. The first group is constructed by connecting the capacity-oriented batteries 1 electrically connected in series. The second group is electrically connected in parallel to the former battery group and constructed by electrically connecting the instantaneous type batteries 2 in series. The switches 301 and 302 are electrically connected in series in a route. Along the route, the negative electrode side of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series and the negative electrode side of the battery group constructed by electrically connecting the instantaneous type batteries 2 in series are electrically connected to each other. A coil 5 is electrically connected between a node which is located between the switches 301 and 302, and another route. Along the route, the negative electrode side of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series and the negative electrode side of the battery group constructed by electrically connecting the instantaneous type batteries 2 in series are electrically connected to each other.
In the present embodiment, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is used for the switches 301 and 302. A MOSFET usually has a parasitic diode built therein, accordingly, the diode 4 shown in
In the present embodiment, an assembled battery constructed by electrically connecting a plurality of lithium-ion secondary batteries in series is adopted for the capacity-oriented batteries 1 and the instantaneous type batteries 2. In particular, a lithium-ion secondary battery wherein lithium cobalt oxide is used for the positive electrode is adopted for the capacity-oriented batteries. Meanwhile, a lithium ion secondary battery wherein olivine lithium iron is used for the positive electrode is adopted for the instantaneous type batteries. As the combination of batteries, there is no limitation to the lithium-ion secondary batteries wherein lithium cobalt oxide is used for the positive electrode only if the batteries are not capable of receiving a high current although they have a high capacity. In particular, a nickel-hydrogen battery or a lead battery may be adopted only if it satisfies the conditions. Further, only if batteries have a low capacity density although they are capable of receiving a high current, the batteries are not limited to lithium-ion secondary batteries wherein olivine lithium iron is used for the positive electrode. Each of the battery groups constructed using a plurality of capacity-oriented batteries or instantaneous type batteries is electrically connected to a plurality of batteries of each same type in series. The battery groups are constructed such that their voltage is approximately 300 V when the state of charge (SOC) thereof is 50%.
Here are cases in which a load is electrically connected to an X and Y point of the battery system configured the way above to carry out charging and discharging.
The first case is when current is comparatively low.
The capacity of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series is represented by A. The capacity of the battery group constructed by electrically connecting the instantaneous type batteries 2 in series is represented by B. Operation of the switches 301 and 302 is illustrated in
Suppose the DUTY ratio of the switches is defined as a ratio at which the switch 301 is on. Then the DUTY ratio corresponds to the capacity ratio {B/(A+B)} between the capacity A and the capacity B. By controlling on/off of the switches 301 and 302 in this manner, the ratio between the currents flowing to the capacity-oriented batteries 1 and the instantaneous type batteries 2 can be adjusted.
As illustrated in
The second case is when a current exceeding the maximum value the capacity-oriented batteries 1 are capable of receiving flows thereto.
As illustrated in
In this manner, in the present embodiment, the voltage adjustment circuit 6 is provided between the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series and the battery group constructed by electrically connecting the instantaneous type batteries 2 in series. The DUTY ratio of the switches which configures the voltage adjustment circuit 6 is changed. Consequently, a current higher than the prescribed value does not flow to the capacity-oriented batteries 1 in any case. In other words, the voltage adjustment circuit 6 functions as a current controlling circuit to prevent a current higher than the prescribed value from flowing to the capacity-oriented batteries 1. Besides, if such a circuit as just described is used, the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series is not electrically cut off. Therefore, the utilization of the capacity-oriented battery 1 does not drop. Accordingly, there will be no necessity to increase the number of instantaneous type batteries 2 to expand the capacity, and thereby the system's growth in size by increasing the number of instantaneous type batteries 2 can be avoided.
Incidentally, electric current exhibits a zigzag variation as illustrated in
As illustrated in
It is to be noted that while the step-up/down chopper shown in
In the example shown in
The results described above reveal that the battery system can charge and discharge in accordance with the capacity ratio when the electric current is comparatively low by varying the DUTY ratio of the switches of the voltage controlling circuit. However, when the electric current is high, the current can flow to the instantaneous type battery.
Based on the findings described above, life of the battery system is evaluated.
A charge and discharge pattern then is illustrated in
A case in which the capacity-oriented battery 1 charged and discharged current, exceeding the maximum value of current the capacity-oriented battery 1 is capable of receiving for a short period of time is determined as one cycle.
The capacity retention rate here is a rate of the capacity after the test for one cycle to the capacity at an initial stage. The decrease of the rate indicates the progress of degradation, showing that the voltage adjustment circuit 6 can suppress degradation of the capacity-oriented batteries.
From the result described above, elongation of the life of the capacity-oriented battery 1 can be expected by providing the voltage adjustment circuit 6 and changing over the current by the switches.
A step-up/down chopper is used as an example of the voltage adjustment circuit 6 above, though, a step-up chopper, a step-down chopper, or both of them may be used for the voltage adjustment circuit 6 as well.
Since a step-up chopper is adopted as the voltage adjustment circuit 6 in the present embodiment, the numbers of the battery groups are adjusted such that the voltage of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series is lower than the voltage of the battery group constructed by electrically connecting the instantaneous type batteries 2 in series.
As shown in
Similarly as upon use of a step-up/down chopper, it is found that, if the battery system is charged and discharged, the capacities of both electrode groups can be used equally when the current is comparatively low. However, when current higher than the level which the capacity-oriented batteries are capable of receiving is supplied, the current flowing to the capacity-oriented batteries can be reduced.
In the present embodiment, the numbers of battery groups are adjusted such that the voltage of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series is higher than the voltage of the battery group constructed by electrically connecting the instantaneous type batteries 2 in series.
In the present embodiment, the location of the switch 301 and coil 5 of the circuit in
Similarly as in the case in which a step-up/down chopper is used, it is found that if the battery system charges and discharges, the capacities of both battery groups can be used equally when the current is comparatively low. However, when current higher than a level of current which the capacity-oriented batteries are capable of receiving is supplied, the current flowing to the capacity-oriented batteries can be reduced.
As shown in
First, a case is studied in which the circuit is set such that the voltage of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series is always lower than the voltage of the battery group constructed by electrically connecting the instantaneous type batteries 2 in series as in the case of the step-up chopper. Movements of the switches thereupon are illustrated in
Another case is studied in which the circuit is set such that the voltage of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series is always higher than the voltage of the battery group constructed by electrically connecting the instantaneous type batteries 2 in series as in the case of the step-up chopper. Movements of the switches thereupon are illustrated in
Further, the switches 301 to 304 are controlled such that the switches 301 and 304 do the same movements and the switches 302 and 303 do the opposite movements. This changeover method is illustrated in
A second embodiment of the present invention is described with reference to
In the present embodiment, a coil 5 which is an impedance adjustment circuit is electrically connected in series in a route between capacity-oriented batteries 1 and instantaneous type batteries 2. More particularly, the route electrically connects the positive electrode side of a battery group constructed by electrically connecting the capacity-oriented batteries 1 in series and the positive electrode side of a battery group constructed by electrically connecting the instantaneous type batteries 2 in series. The impedance adjustment circuit functions as a current controlling circuit for inhibiting current higher than a prescribed value from flowing to the capacity-oriented batteries 1.
In
As illustrated in
From the foregoing results, the current turns out to be suppressed from instantaneously flowing to the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series by using an impedance limitation circuit.
A third embodiment of the present invention is described with reference to
In the present embodiment, a battery group constructed by electrically connecting capacity-oriented batteries 1 in series and another battery group constructed by electrically connecting instantaneous type batteries 2 in series are electrically connected in parallel to form a further battery group. A capacitive element group is electrically connected in parallel to the further battery group. The capacitive element group is constructed by electrically connecting capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series. A voltage adjustment circuit 601 is electrically connected between the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series and the battery group constructed by electrically connecting the instantaneous type batteries 2 in series. Another voltage adjustment circuit 602 is electrically connected between the battery group constructed by electrically connecting the instantaneous type batteries 2 in series and the capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series. The capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series is capable of instantaneously receiving high current in spite of the low capacitance capacitive element group possesses. It is to be noted that the voltage adjustment circuits 601 and 602 are comprised of the step-up/down chopper shown in
A case is studied here in which a load is electrically connected to the system which is consisted in such a manner as described above, and then the system carries out charging and discharging.
The first case is when the current is comparatively low.
The DUTY ratio of the switches of the voltage adjustment circuits 601 and 602 is adjusted so that a current is supplied to the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series, battery group constructed by electrically connecting the instantaneous type batteries 2 in series and capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series in accordance with a ratio corresponding to the capacitance ratio among these three groups. By supplying the current, the capacities of the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series, battery group constructed by electrically connecting the instantaneous type batteries 2 in series and capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors or lithium ion capacitors in series can be used equally.
Another case is studied here in which a current higher than the maximum value of current the capacity-oriented battery is capable of receiving flows thereto.
In this case, the DUTY ratio of the switches of the voltage adjustment circuit 601 is increased. As a result, only the current flowing to the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series decreases. Meanwhile, the current flowing to the battery group constructed by electrically connecting the instantaneous type batteries 2 in series and to the capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series increases.
Another case is when current higher than the maximum value of current the instantaneous type battery is capable of receiving flows thereto.
In this case, the DUTY ratio of the switches of the voltage adjustment circuit 602 is adjusted. As a result, only the current flowing to the capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series increases. Meanwhile, the current flowing to the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series and to the battery group constructed by electrically connecting the instantaneous type batteries 2 in series decreases.
From the results described above, in the present embodiment, when the current is low the current can be supplied equally to the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series, battery group constructed by electrically connecting the instantaneous-type batteries 2 in series, and capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series. On the other hand, when a high current is required, the high current can be supplied to the capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors or lithium ion capacitors in series.
A fourth embodiment of the present invention is described with reference to
In the present embodiment, the systems of the embodiments 1 to 3 are applied as a power supply for a vehicle.
The configuration described below can be applied to a power supply not only of a hybrid vehicle but also of general electric cars and various apparatus other than electric cars. In this case, it is a matter of course that the hybrid vehicle includes not only an automobile but also such vehicles as railway vehicles and buses.
In the present embodiment, a hybrid vehicle which utilizes a series hybrid system is taken as an example and is described. As the hybrid system, a parallel system, a series system, and a system which is a combination of the parallel system and the series system are available. The configuration of the present embodiment described below can be applied to the power supply of all of the systems mentioned.
As shown in
To the battery system 13, a low current flows when moderate acceleration or deceleration is carried out, but high current flows upon sudden acceleration or deceleration. Therefore, in the present embodiment, efficient operation can be carried out by using a current controlling circuit of any one of the embodiments 1 to 3. When the current is comparatively low, the battery system 13 charges and discharges in accordance with a capacity ratio between the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series and the battery group constructed by electrically connecting the instantaneous type batteries 2. When the current is comparatively high, the battery system 13 charges and discharges in accordance with a capacity ratio between the battery group constructed by electrically connecting the capacity-oriented batteries 1 in series, battery group constructed by electrically connecting the instantaneous type batteries 2 in series, and capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors or lithium ion capacitors in series. When the current is high the battery system 13 supplies current only to the battery group constructed by electrically connecting the instantaneous type batteries 2 in series, or the capacitive element group constructed by electrically connecting the capacitive passive elements 8 such as electric double layer capacitors and lithium ion capacitors in series.
According to the various embodiments described above, the capacity-oriented batteries and the instantaneous type batteries are provided in a mixed manner and are electrically connected in parallel. Thus, operation of the current controlling circuit is controlled to inhibit current of a level higher than a prescribed value from flowing to the capacity-orientated battery.
As a current controlling circuit, a voltage adjustment circuit may be provided. The current can be supplied efficiently to the capacity-oriented batteries and the instantaneous type batteries by providing a voltage adjustment circuit between the two different types of batteries and controlling changeover of switches which the voltage adjustment circuit includes. As the voltage adjustment circuit, any one of a step-up chopper, a step-down chopper, or a step-up/down chopper may be used. Where a step-up chopper or a step-down chopper is used, it is necessary for the chopper to normally have a potential difference from either of the capacity-oriented batteries or the instantaneous type batteries.
As the current controlling circuit, an impedance adjustment element may be provided. The impedance adjustment element is preferably a coil.
While the various embodiments and modifications are described above, the present invention is not limited to the contents of them. Also other forms which may be considered within the scope of the technical idea of the present invention are included within the scope of the present invention.
The disclosed contents of the following priority basic application are incorporated herein by reference: Japanese Patent Application No. 123030 of 2011 (filed on Jun. 1, 2011).
Number | Date | Country | Kind |
---|---|---|---|
2011-123030 | Jun 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/063514 | 5/25/2012 | WO | 00 | 2/26/2014 |