This invention relates to a stringed musical instrument and, more particularly, to an electric stringed musical instrument for producing electric tones from an audio signal representative of the vibrations of the strings.
The electric stringed musical instrument is defined as a stringed musical instrument equipped with a vibration sensor such as, for example, a vibration-to-electric current converter. While a player is giving rise to the vibrations of the strings, the vibrating strings exerts the force on the vibration-to-electric current converter, and the converter produces the electric charges. Since the amount of electric charge is proportional to the force, the electric charge forms an electric signal expressing the vibrations. The electric signal is supplied through the sound system to the loud speakers, and the electric tones are radiated from the loud speakers. Thus, the vibration sensor is an important part of the electric stringed musical instrument.
Typical examples of the electric stringed musical instrument are disclosed in Japanese Patent Application laid-open No. 2003-150164 and U.S. Pat. No. 4,635,523. The electric stringed musical instrument disclosed in the Japanese Patent Application is referred to as “the first prior art stringed musical instrument”, and the electric stringed musical instrument disclosed in the U.S. patent is referred to as “the second prior art stringed musical instrument”.
The first prior art stringed musical instrument comprises a solid body, strings, a bridge and a vibration detector unit. The bridge is upright on the upper surface of the solid body. The bridge is downwardly bifurcated from the intermediate portion thereof, and has an upper arc surface. The strings are stretched over the body, and are held in contact with the upper arc surface of the bridge. The bridge has the bifurcated portion, i.e., two legs, and two vibration sensor groups are provided between the upper surface of the solid body and the lower surfaces of the legs. Each of the two vibration sensor groups has two piezoelectric converters and an insulating layer. The insulating layer is sandwiched between the piezoelectric converters, and the piezoelectric converters are held in contact with the lower surface of the leg and the upper surface of the solid body.
The second prior art stringed musical instrument aims at making the tonal quality and the feel of the strings close to those of the corresponding acoustic stringed instrument. The object is accomplished by the support bars, which are made of spruce wood. The support bars are provided between the solid-filled body of the instrument and the bridge, over which the strings extend, and are partially spaced from the solid-filled body. The spruce wood is soft, and the spaces permit the support bars to be deformed. Thus, the support bars are constructed in such a manner as to allow the bridge to vibrate freely. This results in the tonal quality and feel close to those of the corresponding acoustic instrument. However, the U.S. Patent is silent to the location of the vibration sensors.
A problem inherent in the first prior art stringed musical instrument is the tonal quality, and another problem is the feel of the strings. Yet another problem is the difference in sensitivity to the vibrations propagated from the plural strings to the vibration detector unit. Still another problem is the interference between the two vibration sensor groups.
The poor tonal quality and poor feel of strings are derived from influence of the solid body. The solid body is larger in rigidity than the hollow body of the corresponding acoustic musical instrument, and is less deformed during the vibrations of the strings. As a result, the electric tones contain high-frequency components more than those of the tones produced through the corresponding acoustic stringed musical instrument, and the player feels the vibrating strings different from those of the corresponding acoustic stringed musical instrument.
The imbalance in sensitivity is derived from the difference in distance between the vibrating strings and the vibration detector unit. As similar to the bridge of the corresponding acoustic stringed musical instrument, the bridge, which is incorporated in the first prior art stringed musical instrument, has the upper arc surface, and the strings are held in contact with the upper arc surface. This means that the vibrating strings exert the force on the upper arc surface. Although the upper arc surface gives the favorable impression, that is the similar impression to that received from the corresponding stringed musical instrument, to the users, the upper arc surface makes the distance from the plural strings to the vibration detector unit different. Since the vibrations are propagated to the vibration detector unit over the different distance, the vibrations propagated from a string are decayed differently from the vibrations propagated from another string. This results in the electric tones unintentionally different in loudness.
The interference between the two sensor groups is due to the shape of the bridge. The lower portion of the bridge is bifurcated so that the bridge is held in contact at both feet with the upper surface of the solid body. If only one vibration sensor is provided between one of the feet and the upper surface of the solid body, the vibration sensor can not exactly convert the vibrations to the electric signal. The two sensor groups are preferable to the only one sensor from the viewpoint of the fidelity. However, the two sensors independently produce the electric charge. The electric charge output from one sensor group is liable to interfere with the electric charge output from the other sensor group. This results in missing tones and poor tonal quality.
The tonal quality and feel of strings may be fairly improved by means of the support bars incorporated in the second prior art stringed musical instrument. However, two extra parts are required for the second prior art stringed musical instrument. This results in increase of the production cost. Moreover, the support bars push up the bridge and, accordingly, the strings so that the player feels the strings unaccustomed. Thus, the support bars bring new problems upon the users.
Even if the support bars are employed in the first prior art stringed musical instrument, the users suffer from at least the imbalance in sensitivity and interference.
It is therefore an important object of the present invention to provide an electric stringed musical instrument, through which electric tones are produced in good tonal quality and in good feel of strings.
To accomplish the object, the present invention proposes to form an inner space inside a body structure so as to permit a vibratory portion of the body structure widely to vibrate.
In accordance with one aspect of the present invention, there is provided an electric stringed musical instrument for producing electric tones comprising a musical instrument including a body structure formed with an inner space and having a vibratory portion partially defining the inner space, a bridge structure standing on the vibratory portion and plural strings stretched over the body across the bridge structure and independently exciting the bridge structure during vibrations thereof, and an electric system including a vibration sensor connected to the body structure and monitoring the vibratory portion so as to produce an electric signal representative of the vibrations.
The features and advantages of the electric stringed musical instrument will be more clearly understood from the following description taken in conjunction with the accompanying drawings, in which
In the following description, term “rear” is indicative of a position closer to the foot of
Referring to
A player gives rise to vibrations in the musical instrument 10A through the bowing and plucking, and the electric system 10B converts the vibrations to an electric signal, which in turn is converted to electric tones. Thus, the electric system 10B cooperates with the musical instrument 10A so as to produce the electric tones.
Musical Instrument
The musical instrument 10A includes four strings 11, a peg box 12, a neck 13, a finger board 13A, a tailpiece 15, a body 16, a bridge structure 17, a frame structure 25 and an end pin P. The neck 13 forwardly projects from the front end surface of the body 16, and the peg box 12 is attached to the leading end of the neck 13. The frame structure 25 sidewardly projects from the body 16, and is gently curved. The frame structure 25 has a contour analogous to a part of the outline of the body of the acoustic contrabass. While a player is bowing on the electric contrabass 1, the frame structure 25 is held in contact with the chest of the player, and keeps the electric contrabass 10 stable. The end pin P is projectable from and retractable into the body 16. The end pin P is fixed to a proper length during the performance, and keeps the body 16 over a floor.
In this instance, the frame structure 25 has a foldable frame 25a and a fixed frame 25b. Although the fixed frame 25b does not change the relative position with respect to the body 16, the foldable frame 25a is projectable from and retractable into the space at the back of the body 15. The foldable frame 25a is broken down into two parts. The two parts are connected to each other by a pin, and are further connected at the other ends thereof to the body 16. The pins permit the two parts to be folded together and sidewardly stretched. Thus, the pins make the foldable frame 25a projectable from and retractable into the space at the back of the body 16.
While a player is playing a piece of music on the electric contrabass 10, the foldable frame 25a keeps itself on the left side of the body 16 as shown in
Four pegs 12A are rotatably supported by the peg box 12, and laterally extend across the inner space of the peg box 12. The finger board 13A is secured to the upper surface of the neck 13, and the rear portion of the finger board 13A rearwardly overhangs the body 16. The tailpiece 15 is connected to the rear end of the body 16, and projects over the rear portion of the body 16. The bridge structure 17 is upright on the body 16, and is located between the rear end of the finger board 13A and the front end of the tailpiece 15. The strings 4 are stretched between the pegs 12A and the tailpiece 15. The strings extend over the fingerboard 13A and the upper surface of the body 16 across the bridge structure 17. The bridge structure 17 keeps the strings 11 spaced from the upper surface of the finger board 13A as well as from the upper surface of the body 16.
While a player is playing a piece of music on the electric contrabass 10, he or she bows the strings 11 between the rear end of the fingerboard 13A and the bridge structure 17, and selectively presses the strings 11 down on the finger board 13A. The bow gives rise to the vibrations of the strings 11, and the strings 11 vibrate at the frequency depending upon the length between the tailpiece 15 and the upper surface where the strings 11 are pressed down, thickness of the strings 11 and tension exerted on the strings 11.
The body 16 is long and narrow, and is formed with a hollow space 23 as shown in
The tub 21 has a pair of side wall portions 22a, a pair of end wall portions (not shown) and a bottom portion 22b. The side wall portions 22a are merged with both sides of the bottom portion 22b, and are spaced from each other. Similarly, the end wall portions are merged with both ends of the bottom portion 22b, and are spaced from each other. The right side wall portion 22a is partially cut away so that a dent takes place.
The lid 20 is adhered to the upper surfaces of the side wall portions 22a and the upper surfaces of the end wall portions (not shown) so that the inner space 23 is defined by the lid 20 and tub 21. In this instance, the thickness of the lid 20 is fallen within the range between 10 millimeters and 26 millimeters. The lid 20 is spaced from the depressed upper surface, which serves as the bottom of the dent, and defines a slit 26 together with the tub 21. As a result, the inner space 23 is open to the outside through the slit 26. The slit 26 permits the vibrations to deform the lid 20, and is located in such a manner that the bridge structure 17 is on the mid point of the slit 26.
The slit 26 has the length L1, and the body 16 has the length L2. The ratio between the length L1 and the length L2 is preferably fallen within the range between 10% and 40%. When the ratio is varied, the lid 20 exhibits a deflection curve different from that of the lid at the previous ratio. For this reason, the ratio is to be adjusted to an optimum value at which the total quality becomes close to that of the acoustic contrabass. In this instance, the length L2 is of the order of 800 millimeters so that the slit 26 is to be fallen within the range from 80 millimeters to 320 millimeters. In this instance, the slit 26 is adjusted to 150 millimeters.
The height of the slit 26 is to be greater than the maximum deflection due to the tension of the strings 11. In this instance, the height of slit 26 is of the order of 3 millimeters. Thus, the slit 26 measures 150 millimeters by 3 millimeters.
The lid 20 is made of soft wood such as, for example, spruce. The persons skilled in the art are familiar with the spruce, because the manufacturer machines the spruce plates and spruce bars into various component parts of musical instruments. The spruce has the specific weight of the order of 0.4. While the vibrations are propagated from the bridge structure 17 through the lid 20 to the tub 21, the high frequency vibration components are partially filtered during the propagation through the lid 20 so that the tonal quality is improved.
The tub 21 is further formed with an acceptor 28. As will be better seen in
Turning back to
The bridge structure 17 includes a pair of adjusters 29, a bridge plate 31 and a pair of foundation blocks 33. The foundation blocks 33 are respectively located over the slit 26 and acceptor 28, and are held in contact with the lid 20. The bridge plate 31 has an upper portion 31a and a pair of leg portions 31b. A hole 31c is formed in the central area of the upper portion 31a, and the pair of leg portions 31b is bifurcated from the upper portion 31a. Since both side portions are partially cut away from the upper portion 31a like inlets 31d, the boundary between the upper portion 31a and the leg portions 31b is constricted, and permits the vibrating strings 11 to shake the upper portion 31a.
The adjusters 29 are located over the acceptor 28 and the middle portion of the slit 26 as will be seen in
While a player is bowing on the strings 11 and plucking the strings 11, the vibrating strings 11 excite the bridge plate 31, and the bridge plate 31 not only vibrates but also is shaken. The vibrations and shakes are propagated through the foundation blocks 33 to the lid 20 so that the lid 20 is excited.
Since the inner space 23 does not restrict the lid 20, the lid 20 freely vibrates, and the slit 26 permits the right side portion of the lid 20 widely to vibrate. In other words, the slit 26 makes the right side portion of the lid 20 serve as a free end, and the left side portion of the lid 20 serves as a fixed end. As a result, the vibrations produce large bending moment exerted on the right side portion of the lid 20.
The force is always exerted at the foundation blocks 33 on the lid 20, and gives rise to the vibrations of the lid 20. When the leftmost string 11 vibrates, the vibrations are propagated from the foundation blocks 33 to the lid 20. Even when the other strings 11 vibrate, the vibrations are also transferred from the foundation blocks 33 to the lid 20.
Electric System
Turning back to
Referring to
The piezoelectric converter 18A is sensitive at the upper surface 18a thereof to the vibrations so that the vibrating lid 20 repeatedly exerts the force on the upper surface 18a. The force repeatedly gives rise to the strain of the piezoelectric crystal, which forms the essential part of the piezoelectric converter 18A, and the electric charge is taken out from the piezoelectric converter 18A to the shield cable 35.
The sensor holder 36 includes a plate portion 39 and a flange portion 37. The flange portion 37 sidewardly projects from both sides of the plate portion 39. The flange portion 37 is narrower than the flared portion 28A, and is wider than the remaining portion of the acceptor 28. The flange portion 37 is directed in the fore-and-aft direction, and the sensor holder 36 is inserted into the acceptor 28. The flange portion 37 is brought into contact with the inner surfaces, which define the flared portion 28A, and is received in the flared portion 28A. The plate portion 39 is snugly received in the remaining portion of the acceptor 28, and projects into the inner space 23. The piezoelectric converter 18A is mounted on the upper surface of the plate portion 39, and the lower surface of the plate portion 39 is partially retracted so as to form a recess, and the resilient plate 38 is received in the recess. The resilient plate 38 is pressed on the upper surface of the left side wall portion 22a, and urges the piezoelectric converter 18A to the lower surface of the lip 20. Thus, the resilient plate 38 keeps the sensitive surface 18a held in contact with the lid 20.
While the player is bowing on the strings 11 and sometimes plucking them, the vibrating strings 11 excite the lid 20 through the bridge structure 17, and the inner space 23 and slit 26 permit the lid 20 widely to vibrate. The vibrating lid 20 exerts the large bending moment on the piezoelectric converter 18A beneath the right side portion of the lid 20, and the piezoelectric converter 18A produces the electric charge equivalent to the strain of the piezoelectric crystal. The electric charge is taken out from the piezoelectric converter 18A, and flows through the shield cable 35 to the socket (not shown) as the electric signal.
The player is assumed to give rise to the vibrations on the leftmost string 11 or leftmost string 11. The vibrations are transferred from the vibrating bridge plate 31 through the foundation blocks 33 to the lid 20, and reach the piezoelectric converter 18A through the lid 20. When the center strings 11 vibrate, the vibrations are also transferred from the vibrating bridge plate 31 through the foundation blocks 33 to the lid 20, and reach the piezoelectric converter 18A through the lid 20. Although the propagation paths from the rightmost string/leftmost string 1 to the foundation blocks 33 are slightly different from the propagation paths from the center strings 11 to the foundation blocks 11, the distance between the foundation blocks 33 and the piezoelectric converter 18A is constant regardless of the location of the vibrating string 11. For this reason, the difference between the propagation paths is ignoreable so that the electric tones are always produced at the loudness proportional to the force exerted on the strings 11.
As will be appreciated from the foregoing description, the inner space 23 permits the lid 20 widely to vibrate, and the vibration propagating path is equalized from the plural strings 11 to the single vibration sensor 18. As a result, the single vibration sensor 18 converts the vibrations of the lid 20 to the electric signal without the imbalance and interference. Moreover, the high-frequency components are not strongly introduced in the electric signal. This results in mild tones like the acoustic tones.
The slit 26 makes the part of the lid 20 beneath the bridge structure 17 serve as a cantilever. For this reason, while the lid 20 is vibrating, large bending moment is exerted on the vibration converter 18 so that the electric signal widely swings the amplitude thereof. Thus, the slit 16 is desirable for the electric stringed musical instrument.
The relative location between the bridge structure 17 and the vibration sensor 18A is further conducive to the wide amplitude of the electric signal. Moreover, the shield cable 35 extends inside the body 16 so that the external appearance of the electric stringed musical instrument is simple.
The vibration sensor 18 is held in contact with the lower surface of the lid 20, and is spaced from the bridge structure 17. This feature is advantageous, because the user can replace the strings without disassembling the vibration sensor 17.
Although the particular embodiment of the present invention has been shown and described, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present invention.
For example, the component parts of the electric stringed musical instrument may be differently named, and different shapes may be given thereto.
The separate-type electric stringed musical instrument does not set any limit to the technical scope of the present invention, because the electric system 10B may be built in the musical instrument. The electric stringed musical instrument with the built-in electric system is portable rather than the separate-type electric stringed musical instrument.
The present invention may appertain to other members of the violin family, i.e., the violin, viola and cello. An electric contrabass may have the length of the order of 1100 millimeters. Moreover, the present invention may be applied to plucked stringed musical instrument such as, for example, guitars and mandolins. Thus, the electric contrabass does not set any limit to the technical scope of the present invention.
Although the slit 26 is desirable, any slit is not formed between the tub 21 and the lid 20, because the manufacturer can optimize the dimensions of the lid 20 for the vibrations. Another slit may be further formed on the left side of the lid 20.
The piezoelectric converter does not set any limit to the technical scope of the present invention. The Wheatstone bridge may be used as the vibration sensor. Otherwise, a photo reflector may serve as the vibration sensor.
The sensor holder 36 may be eliminated from the vibration sensor 17. In this instance, the resilient plate 38 is directly held in contact with the piezoelectric converter 18A so as to press it to the lower surface of the lid 20. The resilient plate 38 may be replaced with a leaf spring. Otherwise, the piezoelectric converter 18A may be adhered to the lower surface of the lid 20.
The vibration sensor 18 may be provided on the lid 20 for converting the vibrations to the electric signal.
The following component parts are correlated with claim languages. The body 16, neck 13, fingerboard 13A, peg box 12 and tailpiece 15 as a whole constitute a “body structure”.
Number | Date | Country | Kind |
---|---|---|---|
2004-243776 | Aug 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4635523 | Merchant | Jan 1987 | A |
4843937 | Murphy | Jul 1989 | A |
5123326 | Clevinger | Jun 1992 | A |
5641932 | Lace | Jun 1997 | A |
5945622 | Yamada | Aug 1999 | A |
6031164 | Murakami | Feb 2000 | A |
6791023 | Nakaya | Sep 2004 | B2 |
20030094094 | Nakaya | May 2003 | A1 |
20030145711 | Tamura | Aug 2003 | A1 |
20040255762 | Takabayashi | Dec 2004 | A1 |
20050011342 | Fishman | Jan 2005 | A1 |
20050257670 | Takabayashi | Nov 2005 | A1 |
20060011049 | Takabayashi | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
671 110 | Jul 1989 | CH |
1236697 | Jul 1971 | GB |
2003-150164 | May 2003 | JP |
WO-9115844 | Oct 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20060042454 A1 | Mar 2006 | US |