Information
-
Patent Grant
-
6414234
-
Patent Number
6,414,234
-
Date Filed
Wednesday, April 11, 200123 years ago
-
Date Issued
Tuesday, July 2, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Dickstein, Shapiro, Morin & Oshinsky LLP
-
CPC
-
US Classifications
Field of Search
US
- 084 290
- 084 291
- 084 743
-
International Classifications
-
Abstract
An electric double-bass is broken down into a trunk, a detachable framework assembled with the trunk, coupling units provided between the trunk and the detachable framework, accessory parts, strings stretched over the trunk and an electric sound generating system for generating electric tones like acoustic tones of a double-bass, and any resonator is formed in the electric double-bass, wherein a string player disassembles the detachable framework from the trunk for storing the electric double-bass in a case, thereby enhancing the portability of the electric double-bass.
Description
FIELD OF THE INVENTION
This invention relates to a stringed musical instrument and, more particularly, to an electric stringed musical instrument with a frame.
DESCRIPTION OF THE RELATED ART
A violin, viola, cello and double-bass are members of the violin family, and the violin family is essential musical instruments of an orchestra. A standard cello is of the order of 120 centimeters, and is twice longer than a standard violin. The standard cello is four times wider than the standard violin. The double-bass is of the order of 2 meters long, and is almost twice as long as the cello. The compass of a stringed musical instrument is dependent on the length of the string, the specific gravity of the string and the tension exerted on the string. The longer the string is, the lower the pitched part is. For this reason, the compass of the cello is lower than that of the violin, and is higher than that of the double-bass.
The string player puts the body of the violin between the chin and the shoulder, and holds the neck with the left hand. The string player takes the bow with the right hand, and plays the violin. The string player plays the viola in a similar manner. However, the string players stand the cello and the double-bass on a floor. The string player sits on a chair, and puts the cello between the knees. The cello inclines toward the string player, and the body and/or the neck are put on the chest and/or shoulder, and bows the strings. The double-bass is usually played by a string player standing on a floor.
The body is an essential component part of the bowed stringed musical instrument of the violin family, and a resonator is formed in the body. A neck projects from the body, and strings are stretched over the neck and the body. When a player bows the strings, the strings vibrate, and the vibrations are propagated to the body. The body also vibrates for generating tones, and the resonator makes the tones loud. Thus, the bowed stringed musical instrument generates the loud tones through the resonator. Lower pitched tones require a large resonator. For this reason, the double-bass has the largest body in the violin family. A stringed musical instrument with a resonator is hereinbelow referred to as “acoustic stringed musical instrument.” The violin, the viola, the cello and the double-bass described hereinbefore are categorized in the acoustic stringed musical instrument.
The acoustic bowed stringed musical instruments are prominently used in an orchestra. Although other orchestra members generate tones through other musical instruments in a symphony, the other tones do not drown the tones from the acoustic bowed stringed musical instruments, and the audience can discriminate the tones of the acoustic bowed stringed musical instruments from the other tones in a concert hall. Thus, the string player appreciates the resonator for the loudness. However, the loud tones are often a nuisance to the neighborhood. The string players feel it difficult to seek a practice room.
Although the loudness is reduced to some degree with muted strings, it is impossible to keep the acoustic stringed musical instruments silent during the practice. If the resonator were removed from the acoustic stringed musical instrument, the string player would practice the acoustic stringed musical instrument anytime anywhere. However, the resonator or the body is a delicate component part of the acoustic stringed musical instrument. For this reason, the acoustic stringed musical instrument is indecomposable.
In this situation, manufacturers for musical instruments offer electric stringed musical instruments such as an electric cello and an electric double-bass. Any acoustic resonator is not incorporated in the electric stringed musical instruments. While a string player is playing a tune on the electric stringed musical instrument, the vibrations of the strings are converted to an electric signal by means of a pick-up, and an electronic circuit imparts an appropriate envelope to the electric signal so as to give the tones the timbre close to that of the acoustic double-bass. The electric signal is supplied to a sound system, and the unique tones are produced in the sound system. The loudness is easily changeable. In fact, the loudness is drastically reduced to a tenth, and the acoustic energy is of the order of a hundredth. The four strings of a prior art electric stringed musical instrument are averaged at −20 dB. The drastically reduced loudness is as faint as whispers of human voice. Using the electric stringed musical instrument, the string player practices a tune at his or her home anytime.
FIGS. 1 and 2
show the prior art electric bowed stringed musical instrument. The prior art electric bowed stringed musical instrument is corresponding to the acoustic double-bass, and is hereinbelow referred to as “electric double-bass”. The prior art electric double-bass is designated in its entirety by reference numeral
1
.
The prior art electric double-bass
1
comprises a trunk
2
, four strings
3
and a framework
4
. The width of the trunk
2
is increased from the lower end to an intermediate portion, and is decreased from the intermediately portion toward the upper end. In other words, the trunk
2
slightly bulges. The trunk
2
is broken down into a relatively thick base, a relatively thin neck and a fingerboard
2
a.
The relatively thick base portion is integral with the neck. The fingerboard
2
a
is laminated on the relatively thin neck, and extends over the relatively thick base.
A peg box
4
is formed in the relatively thin neck of the trunk
2
, and is provided with a scroll
5
. Four pegs
7
are rotatably supported by the peg box
4
. The four pegs
7
are associated with the four strings
3
, respectively. The peg box
4
, the scroll
5
and the pegs
7
are similar to those of the acoustic double-bass. A tail piece
8
is anchored to the lower end of the trunk
2
, and is gradually spaced from the other end portion of the trunk
2
toward the fingerboard
2
a.
A nut
9
a
is embedded into the upper end of the fingerboard
2
a,
and another bridge
9
b
is upright to the trunk
2
. The four strings
3
extend between the pegs
7
and the tail piece
8
. The four strings
3
are anchored to the tail piece
8
, and are wound on the associated pegs
7
. The nut
9
a
and the bridge
9
b
give tension to the strings
3
. Thus, the four strings
3
are stretched over the fingerboard
2
a
and the trunk
2
.
The framework
4
is broken down into a yoke
4
a
and a shaping board
4
b.
The yoke
4
a
is fixed to the trunk
2
, and projects from a side surface of the trunk
2
. The yoke
4
a
is shaped like a part of the side board of the acoustic double-bass defining the resonator together with the soundboard. The shaping board
4
b
is fixed to the other side surface of the trunk
2
, and sideward projects from the trunk
2
. The shaping board
4
b
is curved like the outline of a half of the body forming a part of the acoustic double-bass. The shaping board
4
b
is connected at both ends thereof to the side surface of the trunk
2
, and is spaced from the trunk
2
between the connected portions. Any soundboard is not put over the space between the trunk
2
and the shaping board
4
b.
For this reason, any resonator is not formed in the prior art electric double-bass.
While a string player is bowing for playing the prior art electric double-bass, the shaping board
4
b
and the yoke
4
a
are held in contact with player's body for keeping the attitude of the prior art electric double-bass. For this reason, the shaping board
4
b
and the yoke
4
a
are shaped like the body of an acoustic double-bass.
An end-pin
10
projects from the lower end of the trunk
2
. The end-pin
10
is retractable into the trunk
2
. The end pin
10
is pressed against a floor so that the prior art double-bass is maintained over the floor by the string player. Though not shown in the figures, a pick-up unit is provided on the trunk
2
, and vibrations of the strings
3
are converted to an electric signal. The pick-up unit is connected to an electronic circuit (not shown), and the electric signal is supplied from the pick-up unit to the electronic circuit. The electronic circuit shapes the electric signal into an audio signal representative of the tones close to those of the acoustic double-bass. The audio signal is supplied to a sound system (not shown), and tones are produced from the audio signal through the sound system. The sound system includes a headphone, and the string player hears the tones through the headphone. Since the prior art electric double-bass does not have any resonator, the strings
3
merely generate faint tones, and the faint tones are not a nuisance to the neighborhood.
Although the prior art electric double-bass is narrower than the acoustic double-bass, the prior art electric double-bass is so large that the string player feels the prior art electric double-bass bulky. In other words, a problem is encountered in the prior art electric double-bass in the portability. The manufacturer makes an electric double-bass on an experimental basis. The manufacturer eliminates the shaping board
4
b
from the prior art electric double-bass. However, the electric double bass made on the experimental basis is unstable. While a string player is bowing, the trunk is liable to turn around the end pin. Thus, there is a trade-off between the prior art electric double-bass and the electric double-bass made on the experimental basis.
SUMMARY OF THE INVENTION
It is therefore an important object of the present invention to provide an electric stringed musical instrument, which is improved in portability without sacrifice of the stability.
To accomplish the object, the present invention proposes to make a framework detachable.
In accordance with one aspect of the present invention, there is provided a stringed musical instrument comprising a body without a resonator and separable into plural parts, a neck projecting from the body, strings stretched over the body and the neck and an electric sound generating system associated with the strings for generating electric tones on the basis of vibrations produced in the strings.
In accordance with another aspect of the present invention, there is provided a stringed musical instrument comprising a trunk, a detachable framework sideward projecting from the trunk, at least one coupling unit connecting the detachable framework to the trunk without forming a resonator, strings stretched over the trunk and independently producing vibrations by a player and an electric sound generating system associated with the strings for producing electric tones on the basis of the vibrations.
In accordance with yet another aspect of the present invention, there is provided a stringed musical instrument comprising a trunk elongated in a first direction, a detachable framework projecting from the trunk in a second direction perpendicular to the first direction, coupling units for connecting the detachable framework to the trunk without forming a resonator, a peg box formed in one end portion of the trunk, pegs supported by the peg box and independently rotatable with respect to the peg box, a fingerboard attached to one end portion of the trunk, a tail piece connected to the other end portion of the trunk, strings stretched over the fingerboard between the pegs and the tail piece and independently producing vibrations by a player, a nut and a bridge respectively attached to the fingerboard and the trunk so as to pass the strings thereover and an electric sound generating system having a pickup unit supported by the trunk for converting the vibrations to electric detecting signals, an electric circuit connected to the pickup unit for producing an audio signal through a signal processing and a sound system connected to the electric circuit for generating electric tones from the audio signal.
BRIEF DESCRIPTION OF THE DRAWINGS
The features and advantages of the electric stringed musical instrument will be more clearly understood from the following description taken in conjunction with the accompanying drawings in which:
FIG. 1
is a front view showing the structure of the prior art electric bowed stringed musical instrument;
FIG. 2
is a side view showing the structure of the prior art electric bowed stringed musical instrument viewed from the different angle;
FIG. 3
is a front view showing the structure of an electric bowed stringed musical instrument according to the present invention;
FIG. 4
is a rear view showing the structure of the electric bowed stringed musical instrument;
FIGS. 5A
is a front view showing a coupling incorporated in the electric bowed stringed musical instrument;
FIG. 5B
is a bottom view showing a part of the coupling unit;
FIG. 6
is a rear view showing a framework partially disconnected from a trunk; and
FIG. 7
is a rear view showing the frame work perfectly disconnected from the trunk.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
First Embodiment
Referring to
FIGS. 3 and 4
of the drawings, an electric bowed stringed musical instrument embodying the present invention is designated in its entirety by reference numeral
20
. The electric bowed stringed musical instrument
20
is designed to be bowed in the similar manner to a standard acoustic double-bass. For this reason, the electric double-bass
20
is as long as the standard acoustic double-bass, and is hereinbelow referred to as “electric double-bass”.
The electric double-bass
20
according to the present invention comprises a trunk
21
, a detachable framework
22
and coupling units
23
,
24
and
25
for connecting the detachable framework
22
to the trunk
21
. The trunk
21
is similar to the trunk
2
of the prior art electric double-bass
1
, and no further description is hereinbelow incorporated for the sake of simplicity. The framework
22
is detachably connected to the thick portion of the trunk
21
.
The framework
22
includes a shaping frame
22
a,
a yoke
22
b
and a connecting plate
22
c.
However, any resonator is formed in the framework
22
. The shaping frame
22
a
is connected at both ends thereof to the rear surface of the trunk
21
by means of the coupling units
23
and
25
. The shaping frame
22
a
sideward project from the trunk
21
, and the yoke
22
b
projects from the other side surface of the trunk
21
in the opposite direction. The connecting plate
22
c
is curved, and is connected at one end thereof to the shaping frame
22
a
by means of a pin
26
and at the other end thereof to the rear surface of the trunk
21
by means of the coupling unit
24
. The connecting plate
22
c
prevents the shaping frame
22
a
from undesirable deformation. The pin
26
permits the connecting plate
22
c
to rotate therearound.
The shaping frame
22
a
has a contour similar to the outline of a half of the body of an acoustic double-bass, and recalls the acoustic double-bass to player's mind. The shaping frame
22
a
is broken down into a plate
22
d
and pads
22
e
and
22
f.
The shaping frame
22
a
is shaped like the Arabic numeral “
3
”, and the pads
22
e
and
22
f
are attached to the plate
22
d.
The pads
22
e
and
22
f
are located at the position where string players are held in contact. In this instance, the plate
22
d
is formed of metal or alloy, and the pads
22
e
and
22
f
are formed of wood or synthetic resin.
The yoke
22
b
is a short bar, and is symmetry with a corresponding portion of the shaping frame
22
a.
The yoke
22
b
is gently curved, and has the contour similar to a shoulder portion of the body of the acoustic double-bass. As will be described hereinbelow, the yoke
22
b
is turnably connected to the shaping frame
4
b,
and, accordingly is foldable toward the shaping frame
4
b.
In this instance, the yoke
22
b
is formed of wood or synthetic resin.
The connecting plate
22
c
is gently curved, and is connected at one end thereof to an intermediate portion of the plate
22
d
by means of the pin
26
. The other end of the connecting plate
22
c
is connected to the trunk
21
by means of the coupling unit
24
. The connecting plate
22
c
makes the span between the connecting portions between the trunk
21
and the shaping frame
22
a.
For this reason, even if external force is exerted to the shaping frame
22
a
toward the trunk
21
, the connecting plate
22
c
keeps the contour of the shaping frame
22
a
unchanged. When the coupling unit
24
releases the connecting plate
22
c
from the trunk
21
, the connecting plate
22
c
turns around the pin
26
, and changes the position in such a manner as to be close to the lower portion of the shaping frame
22
a.
A rigid plate
23
b
(see FIG.
7
), a bolt, a knob
23
a
and a cover plate
23
c
form in combination the coupling unit
23
. The rigid plate
23
b
is fixed to the trunk
21
, and a threaded hole
23
d
is formed in a central portion of the rigid plate
23
b.
The bolt projects from the knob
23
a.
The bolt passes through a hole formed in the cover plate
23
c,
and is rotatably supported by the cover plate
23
c.
The cover plate
23
c
is fixed to the shaping frame
22
a.
A string player aligns the bolt with the threaded hole
23
d,
and rotates the knob
23
a
in a certain direction. The bolt is screwed into the threaded hole
23
d,
and the cover plate
23
c
is pressed against the rigid plate
23
b.
As a result, the shaping frame
22
a
and the yoke
22
b
are connected to the trunk
21
. If the knob
23
a
is rotated in the opposite direction, the bolt is taken off, and the cover plate
23
c
is unfastened from the rigid plate
23
b.
Accordingly, the shaping frame
22
a
and the yoke
22
b
are separated from the trunk
21
.
The coupling unit
24
is similar to the coupling unit
23
, and includes a rigid plate
24
a
fixed to the trunk
21
, a bolt
24
b
projecting from a knob and a cover plate rotatably supporting the bolt
24
b.
The cover plate
24
c
is fixed to the connecting plate
22
c.
A threaded hole
24
d
is also formed in the rigid plate
24
a,
and the bolt
24
b
is screwed into and out of the threaded hole
24
d.
Thus, the connecting plate
22
c
is fastened to and unfastened from the trunk
21
by means of the coupling unit
24
.
Turning to
FIGS. 5A and 5B
, the coupling unit
25
includes a plate
25
a,
a bolt
25
b,
a knob
25
c
and a bottom portion
25
d.
The plate
25
a
is connected to the frame
22
d,
and a hole
25
e
is formed in the plate
25
a.
The hole
25
e
is slightly wider than the bolt
25
b.
The bolt
25
b
projects from the knob
25
c.
The trunk
21
has the bottom portion
25
d,
and a threaded hole
25
f
is formed in the bottom portion
25
d.
Alternatively, the threaded hole
25
f
may be formed in a plate, which is attached to the bottom portion
25
d.
The bolt
25
b
is screwed into and out of the threaded hole
25
f.
When the string player assembles the shaping frame
22
a
with the trunk
21
, the string player pushes the plate
25
a
toward the bolt
25
b
so as to place the bolt
25
b
into the hole
25
e.
Then, the plate
25
a
is laminated on the bottom portion
25
d.
The string player turns the knob
25
c,
and fastens the plate
25
a
to the bottom portion
25
d.
When the string player separates the shaping frame
22
a
from the trunk
21
, the string player loosens the bolt
25
b
with the knob
25
c,
and removes the plate
25
a
from the bottom portion
25
d.
The bolts
25
b
remains partially screwed into the bottom portion
25
d.
Thus, the shaping frame
22
a
is connected to and separated from the trunk
21
by means of the coupling unit
25
.
Turning back to
FIGS. 3 and 4
, the electric double-bass
20
further comprises a peg box
27
, four pegs
28
, a scroll
29
, a fingerboard
30
and a nut
31
. In this instance, the peg box
27
is integral with the trunk
21
, and the scroll
29
is inserted into the peg box
27
. The pegs
28
are rotatably supported by the peg box
27
, and each of the pegs
28
has a shaft, a worm gear, a knob and a worm wheel. The shaft laterally extends over the gap formed in the peg box
27
, and the worm wheel is attached to the shaft. The knob is rotatably supported on the side surface of the peg box
27
, and the worm gear is connected to the knob. The worm gear is meshed with the worm wheel. The knob is driven for rotation by a string player so as to rotate the shaft. Thus, the pegs
28
are identical in function with those of the acoustic double-bass. The fingerboard
30
is attached to the front surface of the trunk
21
, and the nut
31
is embedded into the fingerboard in the proximity with the peg box
27
. Thus, the peg box
27
, the pegs
28
, the scroll
29
, the fingerboard
30
and the nut
31
imitate the appearance of the acoustic double-bass.
The electric double-bass
20
further comprises a tail piece
32
, four strings
33
, a bridge
34
, an end pin EP and a knob KN. The tail piece
32
is attached to the trunk
21
, and is spaced from the fingerboard
30
. The bridge
34
is provided on the front surface of the trunk
21
, and is upright to the front surface of the trunk
21
between the fingerboard
30
and the tail piece
32
. The four strings
33
are anchored to the tail piece
32
, and are wound on the pegs
28
. Thus, the four strings
33
are stretched substantially in parallel to one another over the fingerboard
30
and the exposed front surface of the trunk
21
between the associated pegs
28
and the tail piece
32
. The nut
31
and bridge
34
give tension to the four strings
33
. The strings for the acoustic double-bass are available for the electric double-bass
20
. The strings
33
are less expandable. For this reason, the pegs
28
are driven for rotation by means of the worm gear and the worm wheel. The end pin EP downwardly projects from the trunk
21
. The end pin EP is retractable into the trunk
21
, and is positioned at an arbitrary position by means of the knob KN. The end pin EP keeps the trunk
21
over a floor.
The electric double-bass
20
further comprises an electric sound generating system
35
. The electric sound generating system
35
converts the vibrations of the strings
33
to an analog audio signal and, thereafter, generates electric tones on the basis of the analog audio signal. In this instance, the electric sound generating system
35
includes a pickup unit
35
a
and an electric circuit (not shown). The electric circuit is built in the trunk
21
, and is connected to a sound system
35
c.
The pickup unit
35
a
is provided under the bridge
34
, and is sandwiched between the bridge
34
and the trunk
21
. The pickup unit
35
a
has two piezoelectric elements. Only one or more than two piezoelectric elements may be incorporated in the pickup unit
35
a.
The piezoelectric elements convert the vibrations of the strings
33
to analog detecting signals. The pickup unit
35
a
is connected to the electric circuit, and the analog detecting signals are supplied from the pickup unit
35
a
to the electric circuit. The electric circuit carries out an equalization in the analog detecting signals so as to produce an audio signal. The audio signal represents a timbre close to that of the acoustic double-bass. The electric circuit is connected to the sound system
35
c.
A speaker unit
35
d
and a headphone
35
e
are incorporated in the sound system
35
c.
Although the electric circuit directly supplies the analog audio signal to the headphone
35
e,
the analog audio signal is firstly supplied to an appropriate amplifier
35
f,
and, thereafter, is supplied from the amplifier
35
f
to the speaker unit
35
d.
The electric tones are radiated from the speaker unit
35
d
and/or the headphone
35
e.
Thus, the electric sound generating system
35
generates the audio signal from the vibrations of the strings
33
, and the sound system
35
c
generates the electric tones like those of the acoustic double-bass.
The electric double-bass
20
is disassembled as follows. First, the string player rotates the knob and, accordingly, the bolt
24
b,
and takes off. Then, the cover plate
24
c
is unfastened from the rigid plate
24
a.
The string player turns the connecting plate
22
c
around the pin
26
, and folds the connecting plate
22
c
on the inner surface of the shaping frame
22
a
as shown in FIG.
6
.
Subsequently, the string player turns the knobs
23
a
and
25
c,
and loosens the bolts. The cover plates
23
c
are unfastened from the associated rigid plate
23
b,
and the plate
25
a
is separated from the bottom portion
25
d.
Thus, the framework
22
is released from the trunk
21
. Finally, the yoke
22
b
is folded as shown in FIG.
7
. The folded yoke
22
b
is desirable, because the string player accommodates the trunk
21
and the framework
22
in a narrow case. As will be understood, the framework
22
is detachable from the trunk
21
, and the electric double-bass
20
is improved in the portability by virtue of the detachable framework
22
.
When the string player assembles the framework
22
and the trunk
21
together, the string player takes the above-described order backward, and connects the electric circuit to the sound system
35
c.
Then, the string player gets ready for playing the electric double-bass
20
. While the string player is bowing, the strings
33
selectively vibrate, and the vibrations are converted to the analog detecting signals by means of the pickup unit
35
a.
The electric circuit regulates the volume balance, and makes the timbre like that of the acoustic tones. The electric circuit supplies the analog audio signal to the sound system
35
c,
and the sound system
35
c
generates the electric tones from the analog audio signal.
If the string player wants to practice the electric double-bass
20
silently, the string player instructs the electric circuit to supply the analog audio signal only to the headphone
35
e,
and starts the bowing. Although the strings
33
are vibrating, the strings
33
faintly generate the acoustic tones. The string player can hear the electric tones through the headphone
35
e
without any disturbance to the neighborhood. When another analog audio signal is supplied to the electric circuit from the outside, the string player can practice ensemble together with another silent musical instrument and/or a CD (Compact Disk) player.
As will be appreciated from the foregoing description, the framework
22
is detachable from the trunk
21
, and enhances the portability of the electric double-bass
20
according to the present invention.
Second Embodiment
An electric cello embodying the present invention largely comprises a trunk, a detachable framework, coupling units, strings, accessory parts and a sound generating system. A standard acoustic cello is smaller in size than the standard acoustic double-bass. Although the electric cello is different in dimensions from the electric double-bass, the electric cello is similar in structure to the electric double-bass. In this instance, the electric cello is as long as the acoustic cello, and the strings are shared between the electric cello and the acoustic cello. For this reason, the electric cello is not shown in the drawings. However, there are several differences between the electric cello and the electric double-bass
20
.
The standard acoustic cello is usually bowed by a string player who sits on a chair. This means that the electric cello is held in contact with the string player at different positions from those of the electric double-bass during the performance. For this reason, the framework of the electric cello has pads differently attached to a plate.
The detachable frameworks according to the present invention are appreciated for the large-sized bowed stringed musical instruments of the violin family. However, the detachable framework is available for other members of the electric violin family such as an electric violin and an electric viola. The detachable framework permits a string player to carry the electric violin or the electric viola in a small case. Thus, the detachable framework is desirable for the other members of the electric violin family.
In the above-described embodiments, the relatively thick base of the trunk
21
, the framework
22
and the coupling units
23
,
24
and
25
as a whole constitute a body without any resonator, and the relatively thin neck of the trunk
21
serves as a neck. The thick portion is corresponding to a stem.
Although particular embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present invention.
For example, the pickup unit
35
a
may be directly provided on or in the trunk
21
, the bridge
34
or the fingerboard
30
. The trunk
21
may be separable into more than one piece. The electric circuit may have an equalizer for producing the analog audio signal. The harmonics may be controlled for producing the analog audio signal.
The coupling units
23
,
24
and
25
are used for assembling the trunk and the framework together. In the above-described embodiments, the framework is connected to the trunk through the threaded engagement between the male screws and the female screws. The male screws and the female screws never set any limit on the present invention. A nipple and a socket may be used as another example of the coupling.
Another example of the coupling is a wedge and a stopper. Wedges are formed at both end portions of the shaping frame
22
a
and at one end portion of the connecting plate
22
c,
and holes are formed in the trunk
21
. Stoppers are provided in the holes, and are linked with appropriate buttons. Springs urge the wedges at all times. When the wedge is inserted into the hole, the wedge pushes the stopper along the oblique surface thereof against the spring, and the stopper is engaged with the back surface of the wedge. The stopper does not allow the wedge to move backward. When the string player pushes the button, the button evacuates the stopper from the back surface of the wedge, and the string player moves the wedge out of the hole.
Another example of the coupling unit is a toggle joint. An electromagnetic clutch may be used as yet another example of the coupling unit.
The pickup unit
35
a
electromagnetically produces the analog detecting signal from the vibrations of the strings
23
. Another pickup unit may be implemented by a photo-couplers for producing the analog detecting signals representative of the vibrations of the strings
23
. Yet another pickup unit may include coils so as to produce the analog detecting signals through the electromagnetic induction.
The present invention may appertain to another kind of stringed musical instrument performed by a player through plucking.
The sound system may be built in the trunk
21
.
Claims
- 1. A stringed musical instrument comprising:a body without a resonator and separable into plural parts, including a framework projecting sideways, a neck projecting upwardly from said body, strings stretched over said body and said neck, and an electric sound generating system associated with said strings for generating electric tones on the basis of vibrations produced in said strings.
- 2. The stringed musical instrument as set forth in claim 1, in which said body includesa stem connected to said neck, said framework sideward projecting from said stem and separable from said stem, and at least one coupling unit for connecting said framework to said stem.
- 3. The stringed musical instrument as set forth in claim 2, in which said framework includes a shaping frame projecting from a side surface of said stem and connected to said stem by means of said at least one coupling unit, and said shaping frame has a contour similar to an outline of a body of an acoustic stringed musical instrument.
- 4. The stringed musical instrument as set forth in claim 3, in which said outline defines a half of a body of said acoustic stringed musical instrument.
- 5. The stringed musical instrument as set forth in claim 3, in which said framework further includes a yoke projecting from the other side surface of said stem and having a contour similar to a part of said shaping frame symmetrically positioned with respect to said stem.
- 6. The stringed musical instrument as set forth in claim 5, in which said yoke is turnably connected to said shaping frame so as to be foldable toward said shaping frame.
- 7. The stringed musical instrument as set forth in claim 3, in which said framework further includes a connecting member connected between said stem and an intermediate portion of said shaping frame for keeping said contour of said shaping frame against an external force exerted on said shaping frame.
- 8. The stringed musical instrument as set forth in claim 7, in which said connecting member is turnable around a pin connected between said shaping frame and said connecting member, and said connecting member is connected to said stem by means of another coupling unit.
- 9. The stringed musical instrument as set forth in claim 3, in which said acoustic stringed musical instrument is one of the members of a violin family.
- 10. The stringed musical instrument as set forth in claim 9, in which said one of said members of said violin family is approximately equal in length to said stringed musical instrument.
- 11. The stringed musical instrument as set forth in claim 9, in which said electric sound generating system converts vibrations of said strings to an electric signal and said electric signal to said electric tones the timbre of which is close to the timbre of acoustic tones generated by using said one of said members of said violin family.
- 12. The stringed musical instrument as set forth in claim 9, in which said one of said members of said violin family is a double-bass.
- 13. The stringed musical instrument as set forth in claim 9, in which said one of said members of said violin family is a cello.
- 14. The stringed musical instrument as set forth in claim 2, in which said at least one coupling unit includes a first member with a male screw connected to one of said stem and said framework and a second member with a female screw connected to the other of said stem and said framework.
- 15. A stringed musical instrument comprisinga trunk, a detachable framework sideward projecting from said trunk, at least one coupling unit connecting said detachable framework to said trunk without forming a resonator, strings stretched over said trunk and independently producing vibrations by a player, and an electric sound generating system associated with said strings for producing electric tones on the basis of said vibrations.
- 16. The stringed musical instrument as set forth in claim 15, in which said detachable framework includes a shaping frame projecting from a side surface of said trunk and connected to said trunk by means of said at least one coupling unit, and said shaping frame has a contour similar to an outline of a body of an acoustic stringed musical instrument.
- 17. The stringed musical instrument as set forth in claim 16, in which said outline defines a half of a body of said acoustic stringed musical instrument.
- 18. The stringed musical instrument as set forth in claim 16, in which said detachable framework further includes a yoke projecting from the other side surface of said trunk and having a contour similar to a part of said shaping frame symmetrically positioned with respect to said trunk.
- 19. The stringed musical instrument as set forth in claim 18, in which said yoke is turnably connected to said shaping frame so as to be foldable toward said shaping frame.
- 20. The stringed musical instrument as set forth in claim 16, in which said detachable framework further includes a connecting member connected between said trunk and an intermediate portion of said shaping frame for keeping said contour of said shaping frame against an external force exerted on said shaping frame.
- 21. The stringed musical instrument as set forth in claim 20, in which said connecting member is turnable around a pin connected between said shaping frame and said connecting member, and connecting member is connected to said trunk by means of another coupling unit.
- 22. The stringed musical instrument as set forth in claim 16, in which said acoustic stringed musical instrument is one of the members of a violin family.
- 23. The stringed musical instrument as set forth in claim 22, in which said one of said members of said violin family is approximately equal in length to said stringed musical instrument.
- 24. The stringed musical instrument as set forth in claim 22, in which said electric sound generating system converts vibrations of said strings to an electric signal, and said electric signal to said electric tones the timbre of which is close to the timbre of acoustic tones generated by using said one of said members of said violin family.
- 25. The stringed musical instrument as set forth in claim 22, in which said one of said members of said violin family is a double-bass.
- 26. The stringed musical instrument as set forth in claim 22, in which said one of said members of said violin family is a cello.
- 27. The stringed musical instrument as set forth in claim 15, in which said at least one coupling unit includes a first member with a male screw connected to one of said stem and said framework and a second member with a female screw connected to the other of said stem and said framework.
- 28. A stringed musical instrument comprisinga trunk elongated in a first direction, a detachable framework projecting from said trunk in a second direction perpendicular to said first direction, coupling units for connecting said detachable framework to said trunk without forming a resonator, a peg box formed in one end portion of said trunk, pegs supported by said peg box and independently rotatable with respect to said peg box, a fingerboard attached to one end portion of said trunk, a tail piece connected to the other end portion of said trunk, strings stretched over said fingerboard between said pegs and said tail piece and independently producing vibrations by a player, a nut and a bridge respectively attached to said fingerboard and said trunk so as to pass said strings thereover, and an electric sound generating system having a pickup unit supported by said trunk for converting said vibrations to electric detecting signals, an electric circuit connected to said pickup unit for producing an audio signal through a signal processing and a sound system connected to said electric circuit for generating electric tones from said audio signal.
- 29. The stringed musical instrument as set forth in claim 28, in which said detachable framework includes a shaping frame projecting from a side surface of said trunk and connected at one end thereof to said trunk by means of one of said coupling units and at the other end thereof to said trunk by means of another of said coupling units, and said shaping frame has a contour similar to an outline of a body of an acoustic stringed musical instrument.
- 30. The stringed musical instrument as set forth in claim 29, in which said outline defines a half of a body of said acoustic stringed musical instrument.
- 31. The stringed musical instrument as set forth in claim 29, in which said detachable framework further includes a yoke projecting from the other side surface of said trunk and having a contour similar to a part of said shaping frame symmetrically positioned with respect to said trunk.
- 32. The stringed musical instrument as set forth in claim 31, in which said yoke is turnably connected to said shaping frame so as to be foldable toward said shaping frame.
- 33. The stringed musical instrument as set forth in claim 29, in which said detachable framework further includes a connecting member connected between said trunk and an intermediate portion of said shaping frame for keeping said contour of said shaping frame against an external force exerted on said shaping frame.
- 34. The stringed musical instrument as set forth in claim 33, in which said connecting member is turnable around a pin connected between said shaping frame and said connecting member, and is connected at the other end thereof to said trunk by means of yet another of said coupling units.
- 35. The stringed musical instrument as set forth in claim 29, in which said acoustic stringed musical instrument is one of the members of a violin family.
- 36. The stringed musical instrument as set forth in claim 28, in which each of said coupling units includes a first member with a male screw connected to one of said detachable framework and said trunk and a second member with a female screw connected to the other of said detachable framework and said trunk.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-110759 |
Apr 2000 |
JP |
|
US Referenced Citations (11)