Information
-
Patent Grant
-
6595295
-
Patent Number
6,595,295
-
Date Filed
Friday, August 3, 200123 years ago
-
Date Issued
Tuesday, July 22, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Bagnell; David
- Smith; Matthew J
Agents
-
CPC
-
US Classifications
Field of Search
US
- 166 664
- 166 105
- 166 106
- 166 369
- 166 378
-
International Classifications
-
Abstract
The present invention provides an electric submersible pumping assembly that includes an encapsulated pumping device containing a pump, an electric submersible motor, a sealing device at the top, and an opening device at the bottom. The lubricant-filled, initially sealed, encapsulated pumping device allows the pump and motor to be run in the wellbore without contamination and be left intact until operated.
Description
FIELD OF INVENTION
The present invention relates generally to the field of electric submersible pump assemblies, and more particularly, but not by way of limitation, to an electric submersible pump assembly having an encapsulated submersible motor and pump.
BACKGROUND OF INVENTION
In oil wells and the like from which the production of fluids is desired, a variety of fluid lifting systems have been used to pump the fluids to the surface. It is common to employ various types of downhole pumping systems to pump the subterranean formation fluids to surface collection equipment for transport to processing locations.
One such prior art pumping system is a submersible pumping assembly which is supported in the wellbore, the submersible pumping assembly having a pump and a motor to drive the pump to pressurize and pass the fluid through production tubing to a surface location. A typical electric submersible pump assembly includes a submersible pump and an electric motor that are directly in contact with the wellbore fluids. Submersible pumping assemblies are often placed in the wellbore months or years before use, causing extended exposure to scale and corrosion. Additionally, motor lubricant can suffer breakdowns such as the loss of motor oil light ends during this period of inactivity. Long periods of inactivity have become more communon, particularly in deep water drill locations where it is expensive to rework a well. The cost of reworking an offshore well to add a submersible pump can be so expensive as to make the remaining reserves uneconomical to produce. Thus, there is a need for a method of effectively protecting the submersible pumping assemblies that are currently being placed in the wellbore and keeping the submersible pumping assemblies free from contamination.
SUMMARY OF THE INVENTION
An electric submersible pumping assembly includes, a first sealing device, a first opening device and an encapsulated pumping device. The encapsulated pumping device is disposed between the first sealing device and the first opening device. The encapsulated pumping device includes a pump assembly, a motor assembly and a device body. The motor assembly includes a seal section operably connected to the pump assembly. The device body forms a chamber around the pump assembly and the motor assembly. The encapsulated pumping device transmits production fluids when the first sealing device and the first opening device are open.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1
is a diagrammatical, partially detailed, elevational view of an electric submersible pumping assembly with an encapsulated pumping device constructed in accordance with the present invention.
FIG. 2
is a diagrammatical representation in perspective of the encapsulated pumping device of FIG.
1
.
FIG. 3
is a diagrammatical, partially detailed, elevational view of the encapsulated pumping device of FIG.
1
.
FIG. 4
is a diagrammatical, partially detailed, elevational view of the upper portion of the encapsulated pumping device of FIG.
1
.
FIG. 5
is a diagrammatical, partially detailed, elevational view of the lower portion of the encapsulated pumping device of FIG.
1
.
DETAILED DESCRIPTION
Referring generally to the drawings, and in particular to
FIG. 1
, shown therein is an electric submersible pumping assembly
10
constructed in accordance with the present invention. The electric submersible pumping assembly
10
has an encapsulated pumping device
12
for use in a wellbore
14
below ground level or surface
16
and extending through a producing zone
18
. Located above the encapsulated pumping device
12
is a first sealing device
20
which can be a pressure sensitive disc, retrievable plug, control valve or other similar device capable of staying closed for a period of time and then being opened. The first sealing device
20
can be mechanically, hydraulically or electrically actuated. Methods of actuating the first sealing device
10
can include use of a pressure sensitive disc or a mechanically actuated plug that is retrieved by wireline or coil tubing.
The electric submersible pumping assembly
10
also has a first opening device
22
below the encapsulated pumping device
12
that will allow produced fluids to enter the encapsulated pumping device
12
when operating the encapsulated pumping device
12
. The first opening device
22
can be operated via a control line
24
, and can be hydraulically or electrically actuated. Hydraulic power used to actuate the first opening device
22
can be provided by pump discharge pressure.
The encapsulated pumping device
12
has an upper end portion
26
and a lower end portion
28
. Attached to the lower end portion
28
is a tail pipe
30
which can be a piece of standard tubing. Produced fluid
32
, also known as the production stream
32
, can enter the tail pipe
30
, be pressurized, and produced to the surface
16
through production tubing
34
. The tail pipe
30
can have a second sealing device
36
like the first sealing device
20
described above. The second sealing device
36
can act as a back up to a first opening device
22
.
The production tubing
34
, above the encapsulated pumping device, can have a second opening device
38
that will allow produced fluids to enter production tubing
34
prior to operating the encapsulated pumping device. The second opening device
38
can include perforations, a sliding sleeve, control valve, or another device that is capable of opening and closing the tubing. The second opening device
38
can be hydraulically, electrically or mechanically actuated such as by wireline or coil tubing. As with the first opening device
22
, the second opening device
38
can be manipulated by hydraulic power provided by pump discharge pressure. There can also be an optional packer
40
positioned above the encapsulated pumping device
12
.
FIG. 2
shows the encapsulated pumping device
12
for use in the wellbore
14
. The encapsulated device
12
is in fluid communication with the surface
16
and the production zone
18
(shown in FIG.
1
). The encapsulated pumping device
12
has a device body
44
forming a chamber
46
, the upper end portion
26
and lower end portion
28
being integral portions of the device body
44
. The upper end portion
26
is in fluid communication with a pup joint
48
and a device outlet
52
. The upper end portion
26
abuts an upper connection device
54
via a pressure seal
56
. The upper connection device
54
provides a means of hanging the encapsulated device
12
by the use of the pup joint
48
screwed into the upper connection device
54
. The production tubing
34
is attached to the pup joint
48
, allowing fluid communication with the surface
16
.
The lower end portion
28
abuts a lower connection device
58
and is in fluid communication with a device inlet
60
. The lower connection device
58
provides a connection for tail pipe
30
. Supported inside the device body
44
is a pump assembly
62
which has a multistage submersible pump
64
with a pump inlet
66
in fluid communication with the production zone
18
via inlet device
60
. The pump
64
also has a pump outlet
68
, shown here in a pump discharge head
69
, which is in fluid communication with the device outlet
52
.
The encapsulated electric pumping device also includes an electric submersible motor assembly
70
that drives the multistage submersible pump
64
. This motor assembly
70
includes an electric submersible motor
72
supported in the device body
44
. A seal section
74
is disposed between the pump assembly
62
and the motor assembly
70
. The electric submersible motor
72
is produced by companies such as the assignee of the present invention under model numbers WG-ESP TR-4 and TR-5. The device body
44
also includes a means of power transfer, such as a power cable
76
, for transferring power from a power source to the electric submersible motor assembly
70
through a power connector
78
with a pressurized seal. Special provisions can be made in the upper connection device
54
to install a feed-through system for the power cable
76
. Such systems provide means of running cable inside encapsulated systems by providing high pressure sealing connections. These systems, such as ESP No. 145395, are readily available from vendors such as Quality Connections, Inc. in Foxboro, Mass.
FIG. 3
shows the encapsulated pumping device
12
of the present invention in more detail. The device body
44
can be made up of a series of casing joints screwed together. The power cable
76
has been removed to make the components of the encapsulated pumping device
12
easier to show.
One skilled in the art will recognize that the encapsulated pumping device
12
can have additional components such as a sensor
80
located adjacent the motor
72
for sensing mechanical and physical properties, such as vibration, temperature, pressure and density, at that location. This sensor, such as the commercially available Promore MT12 or MT13 models available from Promore Engineering, Inc. in Houston, Tex., can also be located adjacent to the pump
64
, the motor
72
, the surface
16
or other critical locations. One skilled in the art will understand that one or more of these sensors would be helpful to the operation of the encapsulated pumping device
12
in ways such as using the feedback to optimize production by regulating the encapsulated pumping device
12
and its various components. An example would be to use pump pressure feedback to actuate downhole control valves and operate the opening devices and the sealing devices. It is also well known that the use of a centralizer
82
, as shown in
FIG. 3
, can optimize performance of the pumping device.
FIG. 4
shows the upper connection device
54
of the encapsulated pumping device
12
. The upper connection device
54
of the present invention is preferably a hanger with a hanger body
84
forming a first chamber
86
and a second chamber
88
. The upper connection device
54
has an upper surface
90
and a lower surface
92
. The hanger body
84
of the upper connection device
54
is supported by the device body
44
with fasteners
94
that connect an opening
96
in the device body
44
and an opening
98
in the hanger body
84
.
The first chamber
86
has a connection, which in the present invention is a threaded connection
100
, capable of supporting the pump assembly
62
in the hanger body
84
. The second chamber
88
has a connection, which in the present invention is a threaded connection
102
, capable of supporting a cable connection in the hanger body
84
. The hanger body
84
, of the present invention, has the pressure seal
56
disposed between the device body
44
and the hanger body
84
. The pressure seal
56
is isolates the pressure within the encapsulated pumping device
12
.
FIG. 5
shows the lower connection device
58
of the encapsulated pumping device
12
. The lower connection device
58
of the present invention has a base body
104
forming a chamber
106
having an upper surface
108
and a lower surface
110
. The base body
104
of the lower connection device
58
is supported by the device body
44
. The device body
44
can be attached by welding to the base body
104
. The device body
44
can also be held by fasteners, such as screws, or a design feature, such as a lip, coupled with external forces. The base body
104
has an outer surface
112
and an inner surface
114
such that the outer surface
112
has a connection means, such as threads
116
, capable of supporting other objects, such as joints of tubing or other devices. The lower surface
110
is in fluid communication with the device inlet
60
for accepting the flow of production stream
32
.
Tail pipe
30
can be screwed onto the base
104
using the threads
116
of the lower connection device
58
and this tubing can sting into a second packer (not shown). A control valve can be installed with the packer so that when the control valve actuates, the produced fluids
32
communicate with the pump
64
.
It will be clear to those skilled in the art that more than one encapsulated pumping device
12
could be used in one wellbore. It will also be clear that additional separators, pumps and/or motors can be used in conjunction with the encapsulated pumping device
12
as well as permanent and semipermanent packers.
The electric submersible pumping assembly
10
with an encapsulated pumping device
12
can be incorporated as one part of a larger pumping device to perform other essential downhole functions. For instance, a gas separator can be attached to the electric submersible pumping assembly
10
with an encapsulated pumping device
12
to handle excess gas before the gas passes through a separator.
The encapsulated pumping device
12
is initially lubricant-filled and sealed, thereby increasing the life expectancy, efficiency, and reliability of the pump and motor portions thereof. The choice of a fluid to be run in the encapsulated pumping device
12
involves a number of considerations related to the storage and operation of the encapsulated pumping device
12
. For instance, if a mechanical shock is anticipated prior to start up, a high viscosity fluid would be chosen to minimize the effects of the mechanical shock on the encapsulated pumping device
12
.
The production tubing
34
, also known as discharge tubing, can be blocked with a sealing device, such as a rupture disc, a retrievable plug or similar device, before the encapsulated pumping device is run in the wellbore
14
. The tail pipe
30
, also known as intake tubing, can be blocked with a conventional sliding sleeve, as discussed above, before the encapsulated pumping device is run in the wellbore
14
.
Prior to operating the encapsulated pumping device, the production stream
32
enters the wellbore
14
from the production zone
18
and flows past the encapsulated pumping device
12
. The production stream
32
is produced to the surface
16
through the annulus and enters the production tubing
34
through the second opening device
38
, which can be a sliding sleeve, located above the sealing device
20
. The optional packer
40
can be added to prevent the fluid from entering the casing annulus for a variety of reasons that would be well known to one skilled in the art. At this time the lubricant filled sealed encapsulated pumping device
12
remains protected from wellbore contaminants.
Before the pump is operated, the second opening device
38
is closed and the first opening device
22
is opened using hydraulic or electrical power. The motor powered pump
64
is started, pressurizing the encapsulated device
12
to a preset level, so that the first sealing device
20
ruptures allowing fluids to be pulled into the encapsulated pumping device
12
through the tail pipe
30
and the first opening device
22
. Cooling of the motor
72
can be achieved by maintaining a minimum flow rate velocity of 1 ft/sec of the production stream
32
past the motor
72
.
In another embodiment, the encapsulated pumping device
12
is run in the hole with production tubing
34
that has a first sealing device, such as a rupture disc or similar device, and tail pipe that has a second sealing device
36
, which can also be a rupture disc. The method of rupturing the first sealing device
20
is to pressure up on tubing
34
from the surface
16
to cause a pressure differential across the disc sufficient to burst the rupture disc. This pressure could also rupture the second sealing device
36
located below the encapsulated pumping device
12
. Other surface activated techniques, as are known by those skilled in the art, could also be used to open the first sealing device
20
and the second sealing device
36
. These include, for example, the use of wireline or coil tubing activated techniques used to open a mechanically actuated plug. One skilled in the art would be aware of other mechanical, hydraulic or electrical methods of opening the first sealing device
20
and the second sealing device
36
.
In operation, when the production stream
32
enters the wellbore
14
the fluid is drawn by the motor powered pump
64
to the pump intake section
66
, enters the pump
64
, and is pressurized and pumped to the surface
16
. If there is significant gas present in the fluid stream, it can be advantageous to use a gas separator-type pump intake or other known methods to handle the gas expansion.
It is clear that the present invention is well adapted to carry out the objectives and to attain the ends and advantages mentioned as well as those inherent therein. While the present invention has been described in varying detail for purposes of the disclosure, it will be understood that numerous changes can be made which will readily suggest themselves to those skilled in the art and which are encompassed within the spirit of the invention disclosed in the above text and in the accompanying drawings.
Claims
- 1. An electric submersible pumping assembly for use in a wellbore to pressurize a production stream for production at the surface comprisingan encapsulated pumping device comprising: a device body forming a chamber having an upper end portion and a lower end portion, the upper end portion including a device outlet that abuts an upper connection device and the lower end portion having a device inlet; a pump assembly disposed within the device body and having a pump inlet in fluid communication with the production stream and a pump outlet in fluid communication with the device outlet; and an electric submersible motor assembly disposed within the device body comprising an electric motor having a seal section operably connected to the pump assembly; a first sealing device disposed in the wellbore above the encapsulated pumping device; and a first opening device disposed in the wellbore below the encapsulated pumping device.
- 2. The electric submersible pumping assembly of claim 1 wherein a second opening device is disposed in the wellbore above the encapsulated pumping device.
- 3. The electric submersible pumping assembly of claim 2 wherein a second sealing device is disposed in the wellbore below the encapsulated pumping device.
- 4. The electric submersible pumping assembly of claim 3 wherein a packer is disposed in the wellbore above the electric submersible pumping assembly.
- 5. The electric submersible pumping assembly of claim 1 with the encapsulated pumping device further comprising a sensor device to measure fluid and mechanical conditions and a control device regulating the conditions within the encapsulated pumping device.
- 6. The electric submersible pumping assembly of claim 1 wherein the upper connection device has a screw type connection in the chamber.
- 7. An electric submersible pumping assembly for use in a wellbore to pressurize a production stream for production at the surface comprising:an encapsulated pumping device comprising: a device body forming a chamber having an upper end portion and a lower end portion, the upper end portion including a device outlet that abuts an upper connection device and the lower end portion having a device inlet, wherein the upper connection device is a hanger connection comprising a hanger body forming first and second chambers and upper and lower surfaces such that the hanger body can be supported by the device body, and a pressure seal to isolate pressure around the hanger body, the second chamber having a means of connecting a cable connection to the hanger body; a pump assembly disposed within the device body and having a pump inlet in fluid communication with the production stream and a pump outlet in fluid communication with the device outlet, such that the first chamber has a means of connection the pump assembly to the hanger body; and an electric submersible motor assembly disposed within the device body comprising an electric motor with a seal section operably connected to the pump assembly; a first sealing device disposed in the wellbore above the encapsulated pumping device; and a first opening device disposed in the wellbore below the encapsulated pumping device.
- 8. A method for protecting an encapsulated pumping device for use in a wellbore to pressurize a production stream for production at the surface, the method comprising:disposing the encapsulated pumping device in the wellbore, the encapsulated pumping device including a first opening device below the encapsulated pumping device and a first sealing device above the encapsulated pumping device such that the encapsulated pumping device contains a lubricant; opening the first opening device below the encapsulated pumping device to allow the production stream to pass through a device inlet in the encapsulated pumping device; and powering the encapsulated pumping device to facilitate the movement of the production stream into the encapsulated pumping device.
- 9. The method of claim 8 further comprising:pressurizing the lubricant in the encapsulated pumping device to rupture the first sealing device; and allowing the production stream to pass through the encapsulated pumping device to the surface.
- 10. The method of claim 8, the method further comprising:pressurizing the first sealing device from the surface through a production string to rupture the first sealing device; and allowing the production stream to pass through the encapsulated pumping device to the surface.
- 11. A method for protecting an encapsulated pumping device for use in a wellbore to pressurize a production stream for production at the surface, the method comprising:disposing the encapsulated pumping device in the wellbore, the encapsulated pumping device including a first sealing device above the encapsulated pumping device and a second sealing device below the encapsulated pumping device such that the encapsulated pumping device contains a lubricant; pressurizing the first sealing device from the surface through a production string to rupture the first sealing device; pressurizing the second sealing device from the surface through the production string to rupture the second sealing device powering the encapsulated pumping device to facilitate the movement of the production stream into the encapsulated pumping device; and allowing the production stream to pass through the encapsulated pumping device to the surface.
- 12. An electric submersible pumping assembly, comprising:a first sealing device; a first opening device; and an encapsulated pumping device disposed between the first sealing device and the first opening device, the encapsulated pumping device comprising: a pump assembly; a motor assembly with a seal section operably connected to the pump assembly; and a device body forming a chamber around the pump assembly and the motor assembly that transmits production fluids when the first sealing device and the first opening device are open.
- 13. The electric submersible pumping assembly of claim 12, further comprising a second opening device that transmits the production fluids when the first sealing device is closed.
- 14. The electric submersible pumping assembly of claim 12, further comprising a second sealing device that allows the device body to transmit the production fluids when open.
- 15. The electric submersible pumping assembly of claim 12, wherein a packer is disposed above the encapsulated pumping device.
- 16. The electric submersible pumping assembly of claim 12, further comprising a sensor to measure parameters in a wellbore and a control device to regulate the parameters in the wellbore.
- 17. The electric submersible pumping assembly of claim 12, wherein control valves are actuated by pressure generated by the pump.
US Referenced Citations (10)