This non-provisional patent application claims priority under 35 U.S.C. § 119(a) from Patent Application No. 10 2016 117 783.0 filed in Germany on Sep. 21, 2016.
The present disclosure relates to an electric switch, in particular a switch for manually operated electric hand tools having a motor.
In general, electric switches of this type for manually operated electric tools and appliances, such as electric drills, cordless screwdrivers, hammer drills or the like include a changeover device for shifting the direction of rotation of the motor in addition to the electric circuit, which can be switched by an actuation element able to be activated from outside. Control and regulation of rotational speed or torque can be provided in addition to this changeover device. One advantageous electric switch is known from the German document DE 10 2014 112 982 A1 (trigger switch). This well-known electric switch is provided with a changeover device for changing the direction of rotation of the motor, meaning from clockwise to counterclockwise or vice versa. First, corresponding conducting paths are provided on the circuit board for this purpose. Second, the changeover device includes a position encoder able to be operated from the outside by means of rotational movement of the adjustable position encoder, which is connected to a shift lever inside the switch housing. Rotary actuation of the position encoder causes contact tongues arranged on the shift lever to connect either with the conducting paths on the circuit board for clockwise rotation or with the conducting paths on the circuit board for counterclockwise rotation of the motor.
The novel electric switch is particularly for use in manually operated electric tools having a motor. This electric switch includes a switch housing. Protruding from this housing is a plunger, which is connected to an actuation element and is used for manually operating the electric device. Actuation of the actuation element causes the plunger to move, namely from an initial position, where the electric device is switched off, to an on position, where the electric device is switched on, because movement of the plunger causes switching of at least one contact of a contact system arranged within the switch housing. A circuit board is arranged within the switch housing.
This electric switch furthermore includes a changeover device for changing the direction of rotation. This changeover device comprises a position encoder able to be operated from outside. According to the invention, the position encoder is connected to a contact arm whereupon two contact tongues are arranged, whereby the contact tongues interact with conducting paths for clockwise rotation of the motor when the position encoder is in one position, or they interact with conducting paths for counterclockwise rotation of the motor when the position encoder is in another position. Consequently, in this embodiment of the invention the position encoder is connected directly to the contact tongues, which act on the conducting paths on the circuit board. As a result, the changeover device is considerably simplified in contrast to the known design, which additionally uses a shift lever. Being a part of the contact arm, these contact tongues are directly connected to the movable position encoder in order to change the direction of rotation of the motor from clockwise to counterclockwise. Variously contact conducting paths on the circuit board contact the contact tongues.
To set clockwise or counterclockwise rotation of the motor, the position encoder is actuated from the outside either directly or via an actuator that is accessible from the outside. This setting can be made by way of a linear pushing movement of the actuator or by a rotary movement.
In a preferential embodiment, the contact system is configured for actuating the switch and switching the electric device on and off is provided on one face of the circuit board, for example on an upper face of the circuit board. The conducting paths of the changeover device, which interact with the contact tongues of the position encoder, are arranged on a lower face of the circuit board. Thus, a very compact design is achieved.
In an embodiment of the invention, the position encoder is retained in an enclosure in the housing and is in the form of a disk. Rotary actuation of the disk of the position encoder transmits torque to the contact arm, which is provided on the inside of the switch housing and is retained on the position encoder. The disk of the position encoder is rotatably retained in the enclosure of the switch housing and rotates in a plane oriented parallel to the circuit board. Depending on the rotational position of the disk, the contact tongues formed on the end of the contact arm are either connected to the conducting path on the circuit board for clockwise rotation of the motor, or the contact tongues create a contact bridge for conducting paths for counterclockwise rotation of the motor.
In an embodiment, a tappet is provided on the outer side of the position encoder for movement, in particular for rotary actuation. This tappet interacts, for example, with a rotary directional switch on the hand operated electric tool. The contact arm is provided on the inner side of the position encoder. If the position encoder comprises a disk, then the contact arm is connected to the inner side of the disk so that rotary actuation of the disk of the position encoder also causes the contact arm to move. In order to mount the contact arm, the disk includes a mounting enclosure slit in an inner side and off of a center of the disk. The contact arm is inserted into this slit and retained by a form fit or an interference fit. Due to the off-center arrangement of the contact arm on the disk, rotary movement of the disk changes the position of the contact arm, thus changing the position of the contact tongues of the contact arm, which contact conducting paths on the circuit board.
In a preferential embodiment, the position encoder also comprises a haptic element, which interacts with a peripheral contour of the enclosure in the switch housing, namely the enclosure that rotatably retains the position encoder. The various positions of the contact arm for clockwise or counterclockwise rotation of the motor are provided as corresponding engagement positions in the peripheral contour of the enclosure in the switch housing.
The electric switch described above is built to be quite compact. The changeover device is considerably simplified in contrast to the known design because no additional lever is necessary for transmitting the rotational movement of the position encoder to the contact tongues. The design height of the switch can thus be reduced accordingly.
The following implementations are used for the description of the present disclosure in conjunction with above figures.
Hereinafter technical solutions in embodiments of the present disclosure are described clearly and completely in conjunction with the drawings in embodiments of the present disclosure. Apparently, the described embodiments are only some rather than all of the embodiments of the present disclosure. Any other embodiments obtained based on the embodiments of the present disclosure by those skilled in the art without any creative work fall within the scope of protection of the present disclosure. It is understood that the drawings are only intended to provide reference and illustration, and not to limit the present disclosure. The connections in the drawings are only intended for the clearance of description, and not to limit the type of connections.
It should be noted that, if a component is described to be “connected” to another component, it may be connected to another component directly, or there may be an intervening component simultaneously. All the technical and scientific terms in the present disclosure have the same definitions as the general understanding of those skilled in the art, unless otherwise defined. Herein the terms in the present disclosure are only intended to describe embodiments, and not to limit the present disclosure.
The switch housing 10 of the electric switch shown in
The slider 15 is able to perform a linear pushing movement. A pushing movement of the plunger 13 causes, for one thing, a displacement of a sliding contact 16 onto contact surfaces which are designed as potentiometer tracks for regulating rotational speed. The displacement path of the sliding contact 16 changes the resistance connected to the electric switch 1 and therefore the rotational speed or the torque of the motor are changed. Sliding contacts of the contact system 20 are furthermore arranged on the upper face 31 of the circuit board. The sliding contacts influences the corresponding contact surfaces on the upper face 31 of the circuit board 30, thereby switching the contact system, namely from an off position to an on position. The plunger 13 in this embodiment is spring-loaded. A return spring 60 acts to automatically return the plunger 13 to the off position as soon as pressure is no longer being exerted on the plunger 13.
Contact surfaces in the form of conducting paths 35, 36 are likewise provided on the opposite face of the lower face 32 of the circuit board 30 (see
The position encoder 43 is shown in
The individual parts of the position encoder 43, namely the disk 45 having the tappet 46, having the edge areas 44, and, in this case, also having stops on the inner side of the disk 45 for mounting a haptic element 48 are made of plastic. As can be gathered from
In this case, the mounting slit 47 is arranged on the disk 45 so that rotation of the disk 45 enables the contact arm 41 to move from its present position into a further position. As can be seen from
Described above are exemplary embodiments of the present disclosure, which are not intended to limit the present disclosure. All the modifications, replacements and improvements in the scope of the concepts and principles of the present disclosure are in the scope of the protection thereof.
Number | Date | Country | Kind |
---|---|---|---|
102016117783.0 | Sep 2016 | DE | national |