The disclosure relates to an electric tool such as a hammer or a hammer drill.
In electric tools such as hammers and hammer drills, in order to curb unnecessary noise and vibration in an unloaded state, slow idling control of performing control such that a motor is set to be at a low rotation speed in an unloaded state and switching the motor to a necessary high rotation speed when a load is detected has become known.
Japanese Patent Laid-Open No. 2010-173053.
In a case where an operation (for example, chipping work using a hammer) of frequently switching between a state where a trigger switch is turned on and a motor is driven and a state where the trigger switch is turned off and the motor is not driven is performed, the efficiency of work may be reduced due to slow idling control. Specifically, when repeating an operation of temporarily turning off the trigger switch and then turning on the trigger switch again, control of temporarily driving the motor at a low rotation speed, and then increasing the rotation speed of the motor to a high rotation speed after detecting a load is performed, which results in a problem that a time lag from when the trigger switch is turned on again to when the rotation speed of the motor reaches a high rotation speed (an actual work rotation speed) is increased, and the efficiency of work is reduced.
The disclosure has been made in view of such a situation, and an object thereof is to provide an electric tool which is capable of increasing the efficiency of work.
An aspect of the disclosure is an electric tool. The electric tool includes
a motor,
a tip tool which is driven by the motor,
an operation unit which is operated by an operator, and
a control unit which drives the motor when the operation unit is operated, wherein
the control unit is capable of executing a first control and a second control,
the first control is to drive the motor at a first rotation speed in a non-operating state after an operation with the operation unit is started and before the tip tool is set to be in an operating state and to drive the motor at a second rotation speed higher than the first rotation speed when the tip tool is set to be in the operating state, and
the second control is to drive the motor at the second rotation speed regardless of a state of the tip tool in a case where the operation unit is operated again under a predetermined condition after the operation for the operation unit is released in a state where the motor is driven at the second rotation speed.
It may further include a detection unit which detects a load to be applied to the motor, wherein
the control unit may determine that the tip tool is in the non-operating state when the load detected by the detection unit is less than a first setting value and determine that the tip tool is in the operating state when the load is equal to or greater than the first setting value.
The predetermined condition may be a condition that a rotation speed of the motor is not equal to or less than a predetermined rotation speed.
The predetermined condition may be a condition that a predetermined period of time has not elapsed since the operation is released.
The predetermined condition may be a condition that it is after the operation is released in a state where a load to be applied to the motor is equal to or greater than a second setting value.
The predetermined condition may be a condition that it is after the operation with the operation unit and the operation released are repeated.
When the motor is driven at the second rotation speed, the control unit may drive the motor at the second rotation speed for at least a predetermined period of time even when the tip tool is set to be in the non-operating state.
It may further include a movement transmission mechanism which is capable of transmitting a rotating force and a striking force to the tip tool through a driving force of the motor, and a switching mechanism which switches to drive the tip tool in any mode of a plurality of modes including at least a striking mode and a rotation striking mode.
The control unit may execute the second control only when the switching mechanism selects the striking mode.
The control unit may drive the motor at the first rotation speed in a case where the operation unit is operated again when a mode selected is switched by the switching mechanism before the motor is stopped after the operation is released.
The operation unit may be a trigger switch.
The motor may be a brushless motor.
Meanwhile, any combinations of the above-described components and the expressions of the disclosure which are converted between methods, systems, and the like are also effective as aspects of the disclosure.
According to the disclosure, an electric tool capable of increasing the efficiency of work is provided.
Hereinafter, preferred embodiments of the disclosure will be described in detail with reference to the accompanying drawings. Meanwhile, the same or equivalent components, members, processes, and the like shown in the drawings will be denoted by the same reference numerals and signs, and repeated description thereof will be omitted as appropriate. In addition, the embodiments do not limit the invention but are examples, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
The electric tool 1 is AC-driven here, and a power cord 15 for connection to an external AC power supply extends from a rear end lower portion (a lower end portion of a handle portion 2a) of a housing 2. The rear portion of the housing 2 is the handle portion 2a, and the handle portion 2a is provided with a trigger switch 16 which is an operation unit for a user to switch between driving and stopping of the motor 3. The motor 3, a movement conversion mechanism 4 and a rotation transmission mechanism 5 constituting a movement transmission mechanism, a cylinder 11, and a retainer sleeve (tool holding portion) 12 are held in the housing 2. The cylinder 11 and the retainer sleeve 12 are rotatable with respect to the housing 2 with a front-back direction as an axis. In the cylinder 11 and the retainer sleeve 12, a piston 6, a striker 8, and a middle piece 9 are set to be capable of reciprocating in the front-back direction. A pressure chamber (air chamber) 7 is formed between the piston 6 and the striker 8. The tip tool 10 is detachably held at a front end portion of the retainer sleeve 12.
The motor 3 is an inner rotor type brushless motor here, and is provided on a lower portion of the housing 2. A control circuit board 40 for controlling the driving of the motor 3 is provided at the back of the motor 3 in the housing 2. The rotation of the motor 3 with the vertical direction as an axis is converted into reciprocation of the piston 6 in the front-back direction using the movement conversion mechanism 4 such as a crank mechanism. The pressure (air pressure) of the pressure chamber 7 changes (expands/compressed) due to the reciprocation of the piston 6, and the striker 8 is reciprocated back and forth. The striker 8 strikes the middle piece 9, and the middle piece 9 strikes the tip tool 10. On the other hand, the rotation of the motor 3 with the vertical direction as an axis is converted into the rotation of the cylinder 11 and the retainer sleeve 12 with the front-back direction as an axis using the rotation transmission mechanism 5 including a pair of bevel gears. The tip tool 10 is rotated together with the retainer sleeve 12. A user can switch an operation mode of the electric tool 1 between a hammer mode (striking mode) for applying a striking force without applying a rotating force to the tip tool 10 and a hammer drill mode (rotation striking mode) for applying both a rotating force and a striking force to the tip tool 10 by using a mode setting dial 13 as a switching mechanism provided on an upper portion of the housing 2. A shaft (depth gauge) 17 extending in the front-back direction above the housing 2 is a member for determining the depth of drilling by bringing a front end into contact with a work material, and is attached to the housing 2 at any position in the front-back direction.
The motor control unit 105 controlling the inverter circuit 102 includes a controller 106. A control signal (for example, a PWM signal) from the controller 106 is applied to a gate (control terminal) of each switching element of the inverter circuit 102 through a control signal output circuit 107. Detected signals of Hall elements S1 to S3 are transmitted to a rotor position detection circuit 101. Signals output from the rotor position detection circuit 101 are transmitted to the controller 106 and a motor rotation speed detection circuit 108. The motor rotation speed detection circuit 108 calculates the actual rotation speed of the motor 3. A signal output from the motor rotation speed detection circuit 108 is transmitted to the controller 106. The controller 106 includes a microprocessor that arithmetically calculates a control signal to be output to the control signal output circuit 107, a memory that stores programs, arithmetic expressions, and data used for the control of a rotation speed of the motor 3, and a timer that measures time. The controller 106 executes a control corresponding to an operation mode (a hammer mode or a hammer drill mode) based on a rotation position of the mode setting dial 13. The controller 106 detects a current (load) flowing to the motor 3 according to a voltage between both ends of a resistor Rs as a current (load) detection unit provided in a current path of the motor 3.
In a case where an actual load state, that is, the relation of I≥I1, is not established (NO in S6), the controller 106 continues controlling the motor 3 such that it is at the slow idling rotation speed N0 (S4) when the trigger switch 16 is turned on (YES in S7) and decelerates the motor 3 (S8) when the trigger switch 16 is turned off (an operation is released) (NO in S7). The deceleration of the motor 3 may be natural deceleration or may be deceleration using an electrical brake, for example, by turning off the switching elements (Tr1, Tr3, and Tr5) on an upper arm side of the inverter circuit 102 and turning on the switching elements (Tr2, Tr4, and Tr6) on a lower arm side (this is the same as in S13 to be described later). In a case where the motor 3 has not stopped (NO in S9), the controller 106 continues decelerating the motor 3 (S8) as long as the trigger switch 16 is not turned on (NO in S10). When the motor 3 has stopped (YES in S9), the controller 106 returns to step S1. Before the motor 3 has stopped (NO in S9), when the trigger switch 16 is turned on (YES in S10), the controller 106 returns to controlling the motor 3 such that it is at the slow idling rotation speed N0 (S4).
When an actual load state, that is, the relation of I≥I1, is established in step S6 (YES in S6), the controller 106 controls the motor 3 such that the rotation speed of the motor 3 is set to be a predetermined normal rotation speed (actual work rotation speed) N1 as a second rotation speed (S11). When the trigger switch 16 is turned on (YES in S12), the controller 106 continues controlling the motor 3 (S11) such that it is at the normal rotation speed N1. When the trigger switch 16 is turned off (NO in S12), the controller 106 decelerates the motor 3 (S13). The controller 106 compares the rotation speed N of the motor 3 with a predetermined rotation speed threshold value N2 (S14). N2 may be zero. When the trigger switch 16 is turned on (YES in S12) in a case where N>N2 (YES in S15), the controller 106 returns to controlling the motor 3 such that it is at the normal rotation speed N1 (S11). When the trigger switch 16 is turned off (NO in S12) in a case where N>N2 (YES in S15), the controller 106 continues decelerating the motor 3 (S13). When the trigger switch 16 is turned off (NO in S10) in a case where N≤N2 (NO in S15), the controller 106 transitions to the deceleration of the motor 3 in step S8. When the trigger switch 16 is turned on (YES in S10) in a case where N≤N2 (NO in S15), the controller 106 returns to controlling the motor 3 such that it is at the slow idling rotation speed N0 (S4).
When an actual load state, that is, the relation of I≥IH1, is established in step S6a (YES in S6a), the controller 106 controls the motor 3 such that the rotation speed of the motor 3 is set to be a predetermined normal rotation speed NH1 as a second rotation speed (S11a). When the trigger switch 16 is turned on (YES in S12), the controller 106 continues controlling the motor 3 (S11a) at the normal rotation speed NH1. When the trigger switch 16 is turned off (NO in S12), the controller 106 decelerates the motor 3 (S13). The controller 106 compares the rotation speed N of the motor 3 with a predetermined rotation speed threshold value NH2 (S14a). NH2 may be zero. When the trigger switch 16 is turned on (YES in S12) in a case where N>NH2 (YES in S15a) and in a hammer mode (YES in S16), the controller 106 returns to controlling the motor 3 such that it is at the normal rotation speed NH1 (S11a). When the trigger switch 16 is turned off (NO in S12) in a case where N>NH2 (YES in S15a) and in a hammer mode (YES in S16), the controller 106 continues decelerating the motor 3 (S13). The controller 106 transitions to the deceleration of the motor 3 in step S8 when the trigger switch 16 is turned off (NO in S10) in a case where N≤NH2 (NO in S15a) or N>NH2 (YES in S15a) and in a hammer drill mode (NO in S16), and the controller 106 returns to the determination of a mode (S3) when the trigger switch 16 is turned on (YES in S10).
After the motor 3 is started (S2), when a hammer drill mode is set (NO in S3), the controller 106 controls the motor 3 such that the rotation speed of the motor 3 is set to be a predetermined slow idling rotation speed ND0 (S21). ND0 may be equal to NH0. The controller 106 detects a motor current I and compares the motor current I with a current threshold value ID1 as a first setting value for determining whether or not it is an actual load state (S22). ID1 may be equal to IH1. The controller 106 continues controlling the motor 3 such that it is at the slow idling rotation speed ND0 (S21) when the trigger switch 16 is turned on (YES in S24) in a case where an actual load state, that is, the relation of I≥ID1, is not established (NO in S23), and the controller 106 decelerates the motor 3 (S8) when the trigger switch 16 is turned off (NO in S24). The controller 106 controls the motor 3 (S25) such that the rotation speed of the motor 3 is set to be a predetermined normal rotation speed ND1 when an actual load state, that is, the relation of I≥ID1, is established in step S23 (YES in S23). ND1 may be equal to NH1. The controller 106 returns to step S22 when the trigger switch 16 is turned on (YES in S26). The controller 106 transitions to the deceleration of the motor 3 in step S8 when the trigger switch 16 is turned off (NO in S26).
According to the present embodiment, the following effects can be exhibited.
(1) Since the controller 106 executes a first control to drive the motor 3 at a slow idling rotation speed in a non-operating state after the motor 3 is started and before the tip tool 10 is set to be in an operating state, and to drive the motor 3 at a normal rotation speed higher than a slow idling rotation speed when the tip tool 10 is set to be in an operating state, it is possible to curb unnecessary noise and vibration in a non-operating state from when the motor 3 is started to when an operating state is set.
(2) In control shown in
(3) In control shown in
While the disclosure has been described using the embodiments as examples, one skilled in the art can understand that various modifications can be made to the components and the processing processes in the embodiments without departing from the scope described in claims.
1 Electric tool (hammer drill)
1A Electric tool (portable circular saw)
2 Housing
3 Motor (brushless motor)
4 Movement conversion mechanism
5 Rotation transmission mechanism
6 Piston
7 Pressure chamber (air chamber)
8 Striker
9 Middle piece
10 Tip tool
11 Cylinder
12 Retainer sleeve (tool holding portion)
13 Mode setting dial (switching mechanism)
15 Power code
16 Trigger switch (operation unit)
17 Shaft (depth gauge)
20 Battery pack
40 Control circuit board
Number | Date | Country | Kind |
---|---|---|---|
2017-191587 | Sep 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/032393 | 8/31/2018 | WO | 00 |