This application is based on International Application No. PCT/CN2018/093439, filed on Jun. 28, 2018, which claims priority to and benefits of Chinese Patent Application No. 201710527328.2, filed with the State Intellectual Property Office of P. R. China on Jun. 30, 2017. The entire contents of the above-referenced applications are incorporated herein by reference.
The present disclosure relates to a vehicle body structure, and further to an electric vehicle with the vehicle body structure.
To minimize mortality and injury severity of passengers in a traffic (collision) accident of a vehicle, particularly, a passenger vehicle, is a core design technology of vehicle development and production of passenger vehicles. The design of a collision safety deformation structure of a vehicle body structure is the basis for improving the collision safety performance of vehicles. To meet the increasingly high requirement of the public on the collision safety of family passenger vehicles, in recent years, related departments of countries continuously and gradually improve and add some test conditions of the collision safety performance of passenger vehicles in domestic related regulations and evaluation criteria. For example, the United States has updated a series of regulations and evaluation criteria related to the safety collision performance for vehicles sold in the domestic market, which requires the passenger compartment of the vehicle body to bear a larger collision force and have a smaller deformation under more working conditions.
As the family passenger vehicles are widespread in the global market, environmental protection problems caused by the shortage and burning of fossil energy are increasingly severe. Therefore, countries are actively developing new energy vehicles. Electric vehicles are becoming a future trend as a direction of the new energy vehicles. In addition to meeting the conventional design, designing a longer endurance mileage for the electric vehicles needs to be taken into consideration, to contend with the conventional fuel vehicles.
To improve the endurance mileage, more storage batteries need to be equipped on an electric vehicle. In this way, compared with a fuel vehicle with a same specification, the weight of the electric vehicle is greatly increased, so that under a same test condition, kinetic energy of the vehicle in an early stage of a collision is increased. That is, a vehicle body structure of the electric vehicle needs to be bear larger forces and absorb more kinetic energy to improve the safety. Further, because a storage battery pack needs to be disposed in the electric vehicle, much space under the vehicle body is occupied, and various classic vehicle body collision safety structure technologies of the conventional fuel vehicles cannot be used. Therefore, a new vehicle body structure technology that can meet both the storage battery deployment and the vehicle safety needs to be designed.
An objective of the present disclosure is to provide a vehicle body structure that can better protect a battery pack when a rear collision occurs to a vehicle.
To achieve the foregoing objective, the present disclosure provides a vehicle body structure of an electric vehicle. The electric vehicle includes a battery pack and a motor. The vehicle body structure includes a floor panel and a battery pack anti-collision structure, where the battery pack and the motor are disposed below the floor panel, the motor is located behind the battery pack, and the battery pack anti-collision structure is disposed between the battery pack and the motor, and is configured to prevent the motor from crashing into the battery pack when a rear collision occurs to the electric vehicle.
Through the foregoing technical solutions, when a rear collision occurs to the vehicle and causes the motor to move forward, the battery pack anti-collision structure can change a moving track of the motor to some extent, so that the motor moves downward to avoid the battery pack in front of the motor, thereby preventing the battery pack from being crashed or extruded, preventing the battery pack from catching fire or exploding, and improving the collision safety performance of the vehicle.
The present disclosure further provides an electric vehicle including the foregoing vehicle body structure.
Other features and advantages of the present disclosure are described in detail in the following detailed implementations.
The accompanying drawings are used to provide a further understanding of the present disclosure, constitute a part of this specification, and are used, together with the following specific implementations, to explain the present disclosure, but do not constitute limitations to the present disclosure. In the accompanying drawings:
Specific implementations of the present disclosure are described in detail below with reference to the accompanying drawings. It should be understood that the specific implementations described herein are merely used to describe and explain the present disclosure rather than limiting the present disclosure.
In the present disclosure, unless specified otherwise, location words used such as “up”, “down”, “left”, “right”, “front” and “rear” are defined on the basis of an up-and-down direction, a left-and-right direction and a front-and-rear direction of a vehicle. Specifically, in the drawings, an X direction is the front-and-rear direction of the vehicle, that is, a longitudinal direction of the vehicle, where one side pointed by an arrow is the “front”, and the opposite is the “rear”; an Y direction is the left-and-right direction of the vehicle, that is, a lateral direction of the vehicle, where one side pointed by an arrow is “right”, and the opposite is “left”; and a Z direction is the up-and-down direction of the vehicle, that is, a height direction of the vehicle, where one side pointed by an arrow is “up”, and the opposite is “down”. “Inner” and “outer” are defined on the basis of contours of corresponding components. For example, in-vehicle and out-vehicle are defined on the basis of a contour of a vehicle, where one side close to the middle of the vehicle is “inner”, and the other side is “outer”. The foregoing definitions are merely used to help describe the present disclosure, and should not be understood as a limitation to the present disclosure.
All “crossbeams” in the present disclosure refer to beams generally extending along the left-and-right direction of the vehicle, and all “longitudinal beams” refer to beams generally extending along the front-and-rear direction of the vehicle. In addition, unless specified otherwise, meanings of nouns such as “floor panel”, “rear longitudinal beam” and “rear anti-collision crossbeam” involved in the implementations of the present disclosure are meanings known in the art.
In addition, unless clearly specified or limited otherwise, terms such as “connect”, “attach” and “fix” should be understood broadly, and may be implemented in non-removable manners such as welding, removable manners such as bolting, or integrally forming manners such as molding.
A vehicle body structure of an electric vehicle according to embodiments of the present disclosure is described with reference to
According to an aspect of the present disclosure, a vehicle body structure is provided. As shown in
In the vehicle body structure of the present disclosure, because the strength of the second segment II is greater than that of the first segment I and that of the third segment III, when a rear collision occurs to the vehicle, compared with the first segment I and the third segment III, the second segment II deforms later or does not deform (when the collision force is relatively small), so that the electric control device 740 laterally corresponding to the second segment II deforms later or does not deform to protect the electric control device 740. In this way, the electric control device 740 is provided with enough time to cut off a battery pack 600, thereby preventing the battery pack 600 from dangers such as catching fire or even exploding when the battery pack 600 is extruded.
In an implementation, the strength of the third segment III may be greater than that of the first segment I, that is, the strength of the first segment I is the least, the strength of the third segment III is second least, and the strength of the second segment II is the greatest. In this case, when a rear collision occurs to the vehicle, if the collision force is relatively small, only the first segment I deforms; if the collision force is relatively great, the first segment I deforms first, and then the third segment III deforms; and if the collision force is excessively great, the first segment I deforms first, then the third segment III deforms, and finally the second segment II deforms.
In some embodiments, a division surface P-P of the third segment III and the fourth segment IV may be located behind the rear seat mounting region of the floor panel 300, that is, the rear seat is located in a range corresponding to the fourth segment IV in the lateral direction of the vehicle, and the strength of the fourth segment IV may be greater than that of the third segment III. Further, the strength of the fourth segment IV may be greater than that of the second segment II. By designing the fourth segment IV with relatively great strength, when a rear collision occurs to the vehicle, the fourth segment IV does not deform easily, so that the safety of rear-seat passengers is ensured. Meanwhile, by connecting a rear seat mounting crossbeam in the fourth segment IV, the strength of the fourth segment IV is improved.
In some embodiments, the vehicle body structure may further include a battery pack rear mounting crossbeam 230 (shown in
The division surface P-P of the third segment III and the fourth segment IV may be located behind the battery pack rear mounting crossbeam 230, that is, the battery pack rear mounting crossbeam 230 is connected to the fourth segment IV of the rear longitudinal beam 120. By designing the fourth segment IV with relatively great strength, when a rear collision occurs to the vehicle, the fourth segment IV does not deform easily, so that the safety of the battery pack is ensured. Meanwhile, by connecting an under-floor crossbeam 280 in the fourth segment IV, the strength of the fourth segment IV is improved.
In some embodiments, as shown in
In an implementation, as shown in
As shown in
The battery pack rear mounting crossbeam 230, the under-floor crossbeam 280 and the two rear longitudinal beams 120 form a closed-loop frame structure. The closed-loop frame structure can increase the strength of the vehicle body structure and improve the stability of the vehicle body structure. When a side collision occurs to the vehicle, the battery pack rear mounting crossbeam 230 and the under-floor crossbeam 280 can directly transfer the collision force from the rear longitudinal beam 120 on one side to the rear longitudinal beam 120 on the other side, so that the floor panel 300 basically does not participate in or rarely participates in the collision force transferring and force absorption, thereby limiting and reducing lateral deformations of the floor panel 300 and the rear longitudinal beams 120.
In the present disclosure, the rear longitudinal beam 120 may have any proper structure, as long as strength relationships between segments meet the foregoing requirement.
In an implementation, as shown in
As shown in
As shown in
As shown in
The rear longitudinal beam rear segment strengthening plate 125 may be directly laminated on the rear segment bottom wall 1221. In an implementation, as shown in
In an implementation, a front end of the rear longitudinal beam rear segment 122 may extend to the division surface N-N of the second segment II and the third segment III, that is, the front end of the rear longitudinal beam rear segment 122 is flush with the front end of the rear longitudinal beam rear segment strengthening plate 125, and the length of the rear longitudinal beam rear segment 122 is equal to the sum of the length of the first segment I and the length of the second segment II.
A rear longitudinal beam front segment rear strengthening plate 124 may be disposed in the rear longitudinal beam front segment 121, and the rear longitudinal beam front segment rear strengthening plate 124 may be disposed at a junction of the rear longitudinal beam front segment 121 and the rear longitudinal beam rear segment 122. By disposing the rear longitudinal beam front segment rear strengthening plate 124, the strength of the junction of the rear longitudinal beam front segment 121 and the rear longitudinal beam rear segment 122 can be improved, thereby preventing the junction of the rear longitudinal beam front segment 121 and the rear longitudinal beam rear segment 122 from failing or deforming, which helps transfer the collision force backward or forward when a front collision or a rear collision occurs to the vehicle, and improves the collision safety of the vehicle.
Further, a rear longitudinal beam front segment middle strengthening plate 123 may be further disposed in the rear longitudinal beam front segment 121. One part of the rear longitudinal beam front segment middle strengthening plate 123 may be located in the third segment III, and the other part may be located in the fourth segment IV. By disposing the rear longitudinal beam front segment middle strengthening plate 123, the entire third segment III and a part of the fourth segment IV can be strengthened, so that the strength of the third segment III is greater than that of the first segment I, thereby facilitating to control a crushing sequence of the segments of the rear longitudinal beam when a rear collision occurs.
In an implementation, a cross-sectional area of the fourth segment IV may be greater than those of other segments, so that the strength of the fourth segment IV is greater than that of other segments. In another implementation, a strengthening structure (for example, a strengthening plate or a strengthening rib) may be disposed in the fourth segment IV, to improve the strength of the fourth segment IV to be greater than that of other segments.
To protect the motor 730 when a rear collision occurs to the vehicle or the vehicle is reversing, in an implementation, as shown in
By disposed the motor anti-collision beam 440 behind the motor 730, on one hand, when a rear collision occurs, the motor anti-collision beam 440 can prevent a vehicle behind from directly crashing into the motor 730, to effectively protect the motor 730; and on the other hand, when the vehicle is reversing, the motor anti-collision beam 440 can protect the motor 730 from being damaged by a ground obstacle (for example, a curb or a ground stud), and further protect the motor 730.
Because the two ends of the motor anti-collision beam 440 are respectively and correspondingly connected to the two rear longitudinal beams 120 on the left and the right, when a side collision occurs to the vehicle, the motor anti-collision beam 440 can form a lateral support between the two rear longitudinal beams 120, and reduce lateral deformations of the rear longitudinal beams 120 and the floor panel 300.
The two ends of the motor anti-collision beam 440 may be connected to any proper position of the rear longitudinal beams 120. In an implementation, the two ends of the motor anti-collision beam 440 may be connected to the second segment II of the rear longitudinal beam 120, that is, the motor anti-collision beam 440 may be disposed just below the electric control device 740. In this way, the strength of the second segment II can be improved.
The motor anti-collision beam 440 may have any proper structure and shape. In an implementation, as shown in
To prevent the motor 730 from moving forward and crashing into the battery pack 600 when a rear collision occurs to the vehicle, in an implementation, a battery pack anti-collision structure is disposed between the battery pack 600 and the motor 730. The battery pack anti-collision structure is configured to prevent the motor 730 from crashing into the battery pack 600 when a rear collision occurs to the vehicle. That is, when a rear collision occurs to the vehicle and causes the motor 730 to move forward (including moving forward because the rear longitudinal beam 120 deforms and moving forward because a vehicle behind directly crashes into the motor 730), the battery pack anti-collision structure can change a moving track of the motor 730 to some extent, so that the motor 730 does not crash into the battery pack 600.
The battery pack anti-collision structure may have any proper structure. In an implementation, the battery pack anti-collision structure may include a guide beam 450 or a guide plate disposed obliquely along the front-and-rear direction. The guide beam 450 or the guide plate extends forward and downward. When a rear collision occurs to the vehicle and causes the motor 730 to move forward, the motor 730 crashes into the guide beam 450 or the guide plate, and the guide beam 450 or the guide plate guides the motor 730 to move forward and downward at the same time to avoid the battery pack 600. That is, when a rear collision occurs to the vehicle and causes the motor 730 to move forward, the battery pack anti-collision structure can change the moving track of the motor 730 to some extent, so that the motor 730 moves downward to avoid the battery pack 600 in front of the motor 730, thereby preventing the battery pack 600 from being crashed or extruded.
The guide beam 450 or the guide plate may be mounted on the rear longitudinal beam 120 in various manners. In an implementation, as shown in
The guide beam 450 may be a flat and straight beam. Alternatively, as shown in
In another implementation, as shown in
In still another implementation, as shown in
The rear mounting crossbeam 470 herein may be a beam inherent in the vehicle body structure, or may be a beam disposed separately to mount the guide beam. In an implementation, the rear mounting crossbeam 470 may be, for example, the under-floor crossbeam 280 described above.
Different from the foregoing implementations that the guide beam or the guide plate guides the motor 730 to move, in an alternative implementation, the battery pack anti-collision structure may include a stopping crossbeam or a stopping plate. The stopping crossbeam or the stopping plate is connected to the rear longitudinal beam 120 and disposed between the battery pack 600 and the motor 730, and is configured to stop the motor 730 from moving forward when a rear collision occurs to the electric vehicle. The stopping crossbeam may be generally U-shaped.
On the basis of the foregoing technical solutions, the present disclosure further provides a vehicle. The vehicle includes the vehicle body structure provided by the present disclosure. Therefore, the vehicle includes all the advantages and beneficial effects of the vehicle body structure provided by the present disclosure. To reduce unnecessary repetitions, no description is provided herein again. Specifically, the vehicle may be an electric vehicle, so that the vehicle body structure adapts to the mounting of the battery pack.
Although specific implementations of the present disclosure are described in detail above with reference to the accompanying drawings, the present disclosure is not limited to specific details in the foregoing implementations. Various simple variations can be made to the technical solutions of the present disclosure within the scope of the technical idea of the present disclosure, and such simple variations all fall within the protection scope of the present disclosure.
It should be further noted that the specific technical features described in the foregoing specific implementations can be combined in any appropriate manner provided that no conflict occurs. To avoid unnecessary repetition, various possible combination manners are not further described in the present disclosure.
In addition, various different implementations of the present disclosure may alternatively be combined randomly. Such combinations should also be considered as the content disclosed in the present disclosure provided that these combinations do not depart from the concept of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201710527328.2 | Jun 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/093439 | 6/28/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/001530 | 1/3/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8672354 | Kim | Mar 2014 | B2 |
8936126 | Nitawaki | Jan 2015 | B2 |
9227582 | Katayama | Jan 2016 | B2 |
9499205 | Elia | Nov 2016 | B1 |
9623911 | Kano | Apr 2017 | B2 |
9937781 | Bryer | Apr 2018 | B1 |
9944162 | Li | Apr 2018 | B2 |
10486746 | Kawabe | Nov 2019 | B2 |
10787070 | Kappich | Sep 2020 | B2 |
10787206 | Nagano | Sep 2020 | B2 |
20040235315 | Masui | Nov 2004 | A1 |
20100264699 | Wang | Oct 2010 | A1 |
20120049572 | Hashimura | Mar 2012 | A1 |
20140302362 | Takizawa | Oct 2014 | A1 |
20160141586 | Fujii | May 2016 | A1 |
20160355100 | Ito | Dec 2016 | A1 |
20180086192 | Ishihara | Mar 2018 | A1 |
20180244142 | Takayanagi | Aug 2018 | A1 |
20180345817 | Yamamoto | Dec 2018 | A1 |
20190016391 | Inoue | Jan 2019 | A1 |
20190047393 | Kato | Feb 2019 | A1 |
20190275876 | Fukui | Sep 2019 | A1 |
20190276093 | Tatsuwaki | Sep 2019 | A1 |
20190312320 | Uchiyama | Oct 2019 | A1 |
20200114747 | Lian | Apr 2020 | A1 |
20200114978 | Liu | Apr 2020 | A1 |
20200140016 | Liu | May 2020 | A1 |
20200156706 | Morimoto | May 2020 | A1 |
20200313256 | Kuronuma | Oct 2020 | A1 |
20200361534 | Matsuda | Nov 2020 | A1 |
20200365850 | Shinoda | Nov 2020 | A1 |
20200369166 | Tanaka | Nov 2020 | A1 |
20200376948 | Yamada | Dec 2020 | A1 |
20210001701 | Hoshinoya | Jan 2021 | A1 |
20210006124 | Kobayashi | Jan 2021 | A1 |
20210061081 | Kodama | Mar 2021 | A1 |
20210122221 | Nakamura | Apr 2021 | A1 |
20210147001 | Lian | May 2021 | A1 |
Number | Date | Country |
---|---|---|
100999232 | Jul 2007 | CN |
101209716 | Jul 2008 | CN |
201347133 | Nov 2009 | CN |
201392851 | Jan 2010 | CN |
103935224 | Jul 2014 | CN |
203713512 | Jul 2014 | CN |
106585722 | Apr 2017 | CN |
01248010 | Oct 1989 | JP |
2017074819 | Apr 2017 | JP |
Entry |
---|
English Translation of International Search Report from PCT/CN2018/093439 dated Oct. 10, 2018 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20200148050 A1 | May 2020 | US |