Not Applicable.
Not Applicable.
The present invention relates in general to electrically-powered vehicles, and, more specifically, to a tool for analyzing the potential cost benefits that would be obtained by an individual driver if purchasing any particular electrified vehicle. The tool can also be used to provide guidance and recommendations on which type of electrification on the vehicle is more suited to the customer in question, such as recommending a hybrid electric over a plug-in hybrid, or a plug-in hybrid over a battery electric vehicle, etc.
Electrically-powered vehicles are becoming popular because of reduced energy costs and reduced emissions of pollutants. However, the initial costs of obtaining an electric vehicle are high compared with a combustion-powered vehicle (using a fuel such as gasoline, diesel, natural gas, propane, ethanol, hydrogen, or butanol, for example). Therefore, consumers need to be able to estimate the reduction in operating costs that they can expect to achieve by owning an electric vehicle in order to decide whether a sufficient tradeoff in costs would be achieved to justify a certain choice.
The consumer's decision is complicated by the availability of different types of electrified vehicles. A full electric or battery electric vehicle (BEV) can be plugged into the electric grid for charging the batteries which then supply all the power for driving the vehicle. A hybrid electric vehicle (HEV) combines the battery and electric drivetrain of a BEV with an internal combustion engine. The gasoline-powered engine may be used to recharge the battery or to provide motive power to the drivetrain, depending on the type of HEV. In a plug-in hybrid (PHEV), the batteries may also be recharged by connecting to the electric grid.
For a full electric vehicle, the cost of gasoline or other fuel carried on the vehicle is always zero—but the vehicle has a limited range based on its battery capacity. When there is a limited range, the consumer will want to know how often they would typically engage in a trip chain that would exceed the range. For a hybrid vehicle the range limitation is absent, but when the gasoline engine is used then the operating costs go up. In estimating the energy costs, it is necessary to estimate the frequency with which the gasoline engine would be used based on the driving distances and recharge opportunities considered over all the trip chains that the individual driver would be expected to make.
The manufacturer or seller of an electric vehicle can calculate and compare the energy usage and cost for any particular vehicle according to how the vehicle may be used. Using data from actual driving patterns or statistics from large groups of drivers, comparisons can be made between the energy consumption to be expected with different vehicles. Data can be presented to potential customers showing the comparisons based on the actual or assumed driving patterns. Regulations require labeling of energy use corresponding to certain fixed driving patterns (also known as driving cycles). However, it is difficult for an individual consumer to determine how much of an energy benefit they would obtain based on their own driving patterns over the long term.
A statistical model of individual driving patterns is used to account for variability in day to day trip chain lengths of an individual driver. The model consists of two components: one that accounts for habitual driving behavior such as commuting and one that accounts for less predictable vehicle usage. The habitual component is modeled with normal distribution and the random component is modeled with an exponential distribution. The parameters that define the precise shape of these distributions vary from individual to individual. Values of the parameters are set in response to the answers provided by an individual to a series of specific questions relating to vehicle usage. Using the distribution with the individual parameters, typical fuel consumption and typical electrical consumption are calculated for different vehicles to be compared (e.g., PHEVs, BEV, and gas-only). Using this distribution, estimated trip chains are generated which act as the basis for calculating individualized results for total energy consumption, electrical energy consumption, gasoline or other fuel consumption, and the fraction of trip chains that could be fully electrified (i.e., no gasoline or other fuel used) for BEVs and PHEVs. These results are communicated to the potential consumers using a variety of platforms including but not limited to a spread sheet programs, Web-based calculators, and kiosks at dealerships or auto shows. Other applications of this “individual trip chain distribution generator” are possible, such as individual estimates of fuel economy based on a breakdown of city versus highway driving that is inferred from the distribution, and the number of cold-starts associated with a given accumulated travel distance.
In one aspect of the invention, a benefit analysis system is provided in which a user compares energy consumption between a first electrified vehicle and a second vehicle. A data collector receives user driving characteristics comprised of a commute distance, a commute repetition, a long-term aggregate driving distance, and a daily usage rate. A parameter calculation module receives the user driving characteristics, wherein the parameter calculation module determines a peak parameter, a width parameter, a weigh factor, a scale factor, and a frequency parameter in response to the user driving characteristics. An analyzer is responsive to the parameters from the parameter calculation module to generate respective energy consumption results for the first and second vehicles. The analyzer represents an individual trip chain distribution as a composite function including a habitual component defined by the peak parameter and the width parameter and a non-habitual component defined by the scale factor. The composite function combines the habitual component and the non-habitual component according to the weight factor. The analyzer determines the energy consumption results in response to the individual trip chain distributions.
Referring now to
The energy comparison results preferably correspond to an individual fuel offset achieved by the individual when switching from a gasoline-powered vehicle to an electric vehicle such as a PHEV. The user inputs data into data collector 10 corresponding to the user's driving characteristics, wherein the data preferably includes a commute distance, a commute repetition, a long-term aggregate driving distance, and a daily usage rate. Parameter calculator 11 receives the user driving characteristics and determines a peak parameter, a width parameter, a weight factor, a scale factor, and a frequency parameter in response to the user driving characteristics to be used in model 13 as described below. Energy calculator 14 generates respective energy consumption results for different vehicles to be compared. Model represents an individual trip chain distribution (ITCD) as a composite function including a habitual component defined by the peak parameter and the width parameter, and a non-habitual component defined by the scale factor. The composite function combines the habitual component and the non-habitual component according to the weight factor. Energy calculator 14 determines energy consumption results in response to the individual trip chain distributions.
As shown in
A screen display according to one example embodiment is shown in
Cells 35 and 36 include pull down lists allowing the user to select electric vehicle models to be analyzed in the energy comparison. In the example shown, the user has selected a plug-in hybrid and a non-plug-in hybrid for comparison.
The spreadsheet employs a model and associated calculations described in more detail below in order to determine a fuel consumption for the standard hybrid in cell 37 and fuel consumption for the plug-in hybrid in cell 38. The difference in fuel consumption yields a fuel savings value that is displayed in cell 39. The savings shown as a percentage is displayed in cell 40.
Additional information and/or comparisons may be automatically calculated and displayed in the spreadsheet, such as a comparison between the selected plug-in hybrid and a non-electric vehicle of comparable body style. Thus, based on the user's driving characteristics, fuel consumption for a gasoline-powered vehicle is shown in cell 41. Fuel consumption by the PHEV and the relative fuel savings compared to the non-electric vehicle are shown in cells 42-44. Based on the user driving characteristics, other calculated information such as an estimate of the frequency of days when the driven distance exceeds the electric range of the vehicle (i.e., days of operation which are not fully electrified for all trip chains) or other calculations such as the cost of electrical energy usage for recharging can be shown. Interactive features could also be employed wherein the user could tweak their answers (e.g., to discover how a different commute distance would impact the energy results). Such a sensitivity analysis could also be provided automatically.
Although a direct vehicle-to-vehicle comparison is shown for two vehicles selected by a user, the invention could also automatically generate a comparison between a larger group of vehicles that may be of potential interest to the user. For example, the comparison could compare a “base” vehicle (e.g., a non-hybrid gasoline vehicle of a certain size) to all electric and/or hybrid vehicles of the same or similar size).
The model of the present invention employs the concept of an individual trip chain distribution (ITCD), which is a measure of how far the vehicle is driven between charging opportunities. Thus, a trip chain may include a plurality of actual “trips” in which the user starts up, drives to a destination, leaves the vehicle, re-enters the vehicle, and drives to yet another destination (i.e., the trip chain includes more than one driving event such that the trip chain begins and ends at a re-charging opportunity). For example, on any particular day between various recharging opportunities, a user may commute to work and back home and/or venture out on a shopping or other trip. A charging opportunity may be any occurrence when the vehicle is parked for at least a predetermined minimum time such as four hours at home or other location where an electric power source for recharging is available. While a trip chain may usually be completed in a 24 hour period, there could also be times when the driver has additional charging opportunities so that there would be more than one trip chain in a particular day.
The model of the present invention is derived, in part, based on a detailed data set collected over a large number of drivers over a large fraction of a year. Trip distance data for one sample driver is shown in
The present invention represents individual trip chain distributions for each individual driver as a composite function with a habitual component preferably having a “peaked” distribution and a non-habitual component preferably having an exponential distribution. As shown in
As shown in
The parameters for calibrating the composite function for the ITCDs of a user the peak parameter μ, the width parameter σ, the frequency parameter λ, the weight factor w, and the scale factor k. The user's answer to the question “how many days per week do you commute” is designated as the commute repetition X1. The user's answer to the question “what is your round trip commute distance” is designated as the commute distance X2. The user's answer to the question “what is your total annual mileage driven” is designated as the long-term aggregate driving distance X3. The user's answer to the question “how many days per year do you driver your car” is designated as the daily usage rate X4. The parameters are calculated from the user's answers as follows:
μ=X2
σ=min(X2/5,7.5)
λ=X4/365
w=(X3−52X2X1)/X3
k=X
3/(365λw)−(1−w)μ/w
Thus, the location of the peak of the habitual component is determined by the commute round-trip distance. The width a of the peak is set to one-fifth of the value of μ unless μ is larger than 37.5, in which case σ is set to 7.5 so that the modeled ITCDs maintain a sufficient proportion of habitual driving.
More specifically, a composite ITCD function designated p(x) is as follows:
The calculated parameters define a composite function for the ITCDs that estimates the driving behavior of the individual user. With the estimated ITCDs, the gasoline fuel consumption and/or any other energy consumption can be calculated based on the capabilities and assumptions associated with the various vehicle models and types that are configured for the analysis. In general, the energy consumption for a vehicle can be found using the following equations.
where EFND is the fuel energy consumption of a vehicle without a depletion phase (i.e., a vehicle without a battery to supply energy for part or all of the propulsion) and where EF is fuel energy consumption of a vehicle with a depletion phase characterized by a depletion range related to a usable battery capacity E as follows:
The rate of fuel energy consumption for a particular vehicle during the battery depletion phase is designated γFD, and the rate of electrical energy consumption for the vehicle during the battery depletion phase is designated γED. The rate of fuel energy consumption during a sustaining phase wherein a hybrid vehicle operates with no net contribution from the battery is designated γFS. These rates are programmed into the analyzer for each vehicle to be compared. Using the programmed rates and the calculated parameters, the annual fuel usage for the selected vehicles are calculated and the fuel savings are displayed.
A more detailed alternative energy consumption model could optionally be used in which there are two basic types of driving: highway driving and city driving. The fraction of highway vs. city driving is generally a function of the length of the trip. Shorter trips tend to have a larger fraction of city miles than longer trips. Based on empirical data, the fraction of highway miles increases from zero for short trips approximately linearly up to some trip length and then saturates at a more or less constant fraction of highway miles at about 70%. This can be approximated with a piece-wise linear function. For trip chains less than a saturation distance (xs), the fraction of highway miles is given by φ=xφs/xs. For trip chains greater than the saturation distance, the fraction of highway miles is φ=φs. For both the city and highway cycles, the vehicle requires a certain amount of energy to sustain the cycle. The vehicle energy required for highway driving is εvehH and for city driving is εvehC. The amount of energy required by the vehicle is independent of whether that energy is supplied by on-board fuel or electrical energy from the battery. What changes when switching from fuel energy to electrical energy is the efficiency of the propulsion system to convert the stored energy into kinetic energy for the vehicle. The efficiency of converting fuel energy to kinetic energy is ηF and the efficiency of converting energy stored in the battery to kinetic energy is ηE.
Each trip chain is divided into two segments. The first segment is the depletion phase. During this phase the vehicle uses plug-in energy stored in the battery if possible. Because of various design constraints in the vehicle, it may not be possible to use purely electric drive during the depletion phase. If this is the case, the vehicle will be operating in a blended operating mode in which some fraction of the vehicle energy is provided by electric energy and the rest is provided by fuel. This fraction is called the electrification fraction. In general, there will be a different electrification fraction for city (fCE) and highway (fHE) driving.
If a trip chain is long enough, the battery charge will be depleted to the point that it is no longer possible to use energy from the battery. Once the battery has been depleted, the vehicle shifts into a charge sustaining mode. In this mode all energy comes from fuel. To calculate the average of the fuel energy and electrical energy consumed over a distribution of drive distances, the energy consumption rate by the vehicle during these two phases is needed. For the charge-sustaining phase, a fuel consumption number for city driving and highway driving are needed. For the depletion phase, fuel consumption and electrical consumption for both city and highway driving are needed. An approximation of these relationship is given by:
The distance the vehicle can travel during the depletion phase is referred to as the plug-in range of the vehicle. Letting EPI be the energy available in a fully charged is battery, the plug in range (R) is determined by setting the electric energy consumption equal to EPI and solving for R. This gives the following two expressions:
For trip chains longer than the depletion range, the energy consumed per unit distance driven is the energy consumption in charge sustaining mode minus the energy offset during charge sustaining mode divided by the total trip chain length. So, the fuel energy consumption per unit distance driven for trip chains less than the plug-in range is εF(x)=γHFDφ(x)+γCFD(1−φ(x)), and for trip chains longer than the plug-in range then energy consumption is
The electrical consumption for trip chains less than plug-in range is εE(x)=γHEDφ(x)+γCED(1−φ(x)). For trip chains longer than the plug-in range, the electrical energy consumed per unit distance driven is the usable capacity of the battery divided by the trip chain length, namely εE(x)=EPI/x.
To calculate fuel-offset due to charge-depleting operation, the amount of fuel used by vehicles operating only in charge sustaining mode is first calculated. Then the fuel energy used if the vehicle uses energy from the battery in a charge depleting mode is calculated. From these two numbers, the percent of fuel energy that is offset by the plug-in operation is determined. For completeness, a calculation of the electrical energy consumed is completed.
The average fuel energy consumed per trip chain in the absence of a charge depleting mode is:
To calculate the energy consumption with depletion it becomes necessary to consider two cases: the case when the plug-in range of the vehicle is larger than the distance at which the highway driving fraction saturates, and the case when the plug-in range is less than the saturation distance. In practice, the plug-in range will almost certainly be less than the saturation distance. For completeness, both cases are discussed.
For the case that R<xs, the average fuel energy consumed in a charge depleting mode is:
In Equation 8, the first term is the integral taken up to the plug-in range of the vehicle. In this term, the fuel energy consumption for charge depletion in city and highway driving can be averaged. In the second term, the integration is from the plug-in range up to the saturation distance. In this term, the fuel energy consumption is switched to the charge sustaining values while continuing to use a linearly increasing expression for the fraction of highway miles driven. The third integral represents the charge sustaining operation above the saturation distance. In this term, the charge sustaining fuel consumption numbers and a constant fraction of highway miles driven are used. The fourth term is an energy offset due to depletion of the battery.
For the case that R>xs, the average fuel energy consumed in charge depletion is:
The difference in Equation 9 as compared to Equation 8 is a switch from a linearly increasing fraction of highway miles driven to a constant fraction of highway miles for the third integral, representing the charge sustaining operation.
To calculate the average electrical energy consumed, it is noted that electrical energy is consumed for propulsion only up to the electrified range of the vehicle. For any trip chain greater than this range, the entire plug-in capacity of the battery (EPI) is used. So, for trip chains greater than the plug-in range, the grid energy consumed per unit distance driven is the capacity of the battery divided by the length of the trip chain.
With this in mind, the average grid energy consumed per unit distance driven for the case that R<xs is:
The average grid energy consumed for the case that R>xs is:
For the case of an all-electric vehicle, the driving range is sufficiently large that the distance-dependent mix of surface and freeway driving does not apply, and a single rate of energy consumption can be used. For a given usable battery energy, electric range is then given by equation 4. For a given electric range, and the parameters extracted from the questionnaire, the of number days per year that the range R is inadequate to complete the desired trip chain is given by:
The energy comparison results may preferably report this number of days to the user whenever a vehicle being compared is a fully electric, non-hybrid vehicle.