The present invention relates to an electric-wire protection pipe that is made of metal and forms a wiring path through which insulated electric wires pass, and a wire harness including the same.
Conventionally, a wire harness mounted to a vehicle sometimes includes an electric-wire protection pipe that is a tubular metal member surrounding insulated electric wires as described in JP 2004-171952A, for example. The electric-wire protection pipe is (i) a member that mechanically protects the insulated electric wires as well as (ii) an electromagnetic shielding member that shields from electromagnetic noise waves. Therefore, the insulated electric wires that pass through the electric-wire protection pipe are non-shielded-type electric wires including no shielding members such as a braided wire.
Moreover, JP 2011-146228A proposes to use an electric-wire protection pipe provided with a partition wall thereinside. The hollow portion of the electric-wire protection pipe described in JP 2011-146228A is partitioned into a plurality of wiring paths by the partition wall.
When the electric-wire protection pipe provided with the partition wall thereinside is used, even if a plurality of types of insulated electric wires pass through one electric-wire protection pipe, it is possible to prevent the influences of electromagnetic noise between different types of insulated electric wires without using electric wires having a shielding member. That is, such an electric-wire protection pipe is provided with a plurality of wiring paths that each have a shielding function thereinside.
For example, insulated electric wires for a power system and insulated electric wires for a low-current system may pass through separate wiring paths partitioned by the partition wall, and thereby, it is possible to prevent the electromagnetic noise from the insulated electric wires for the power system from influencing the insulated electric wires for the low-current system.
Incidentally, the partition wall of the electric-wire protection pipe described in JP 2011-146228A has a cross-section with a curved shape or a crooked shape, and therefore, the electric-wire protection pipe is easy to bend. For example, in the examples shown in FIGS. 1 and 3 of JP 2011-146228A, a partition wall having a cross-section with a zigzag shape passes an axis (centerline) of a cylindrical main portion and partitions the hollow portion of the main portion into two equal portions. Thereby, the hollow portion of the electric-wire protection pipe is provided with two wiring paths with the same shape.
The electric-wire protection pipe shown in FIGS. 1 and 3 of JP 2011-146228A is easily bent so that one of a pair of border lines formed by portions in which the cylindrical main portion and the zigzag partition wall are connected to each other is an inner edge and the other is an outer edge. In this case, at the bent portion of the electric-wire protection pipe, the main portion is deformed into a flattened shape in which a dimension in a bending direction is reduced, and the zigzag partition wall is contracted in a direction of the diameter of the main portion in the same manner as a plate with a bellows shape is contracted. Therefore, even at the bent portion, the two wiring paths have cross-sections with substantially the same shape.
However, if the zigzag partition wall described in JP 2011-146228A were provided so as not to pass the axis of the tubular main portion, it is difficult to predict how the partition wall would be deformed at the bent portion of the electric-wire protection pipe. Therefore, there is a possibility that the balance between the cross-sectional areas of the two wiring paths with shapes different from each other would be significantly changed at the bent portion, one wiring path would become extremely small, and then the partition wall would press against the insulated electric wires. Accordingly, when it is desired to partition the hollow portion of the electric-wire protection pipe to be bent into two wiring paths that have cross-sections with shapes different from each other, the zigzag partition wall described in JP 2011-146228A is not suitable.
It is an object of the present invention that while the ease of bending processing is secured in the electric-wire protection pipe provided with two wiring paths having a shielding function thereinside, it is possible to prevent the balance between the cross-sectional areas of the two wiring paths with is shapes different from each other from being significantly changed at the bent portion.
A wire harness according to a first aspect of the present invention comprises a plurality of insulated electric wires, and an electric-wire protection pipe through which the insulated electric wires pass. The electric-wire protection pipe comprises (i) a tubular main portion that constitutes an outer wall of the electric-wire protection pipe and that has a longitudinal axis, wherein a reference plane passes through the longitudinal axis in a first direction, and (ii) a curved partition wall that connects to the tubular main portion at border lines that are parallel to the longitudinal axis and are located on the first direction side of the longitudinal axis. The curved partition wall has a convex side that projects in a second direction opposite to the first direction. Furthermore, the curved partition wall partitions a hollow portion of the tubular main portion into a first wiring path on the first direction side and a second wiring path on the second direction side. Additionally, the electric-wire protection pipe has a bent portion that is bent along the reference plane.
The curved partition wall of the electric-wire protection pipe may have symmetry with respect to the reference plane.
A mark may be formed at one or both portions along a line on which the outer side surface of the tubular main portion and the reference plane intersect with each other.
In another aspect, the present invention provides an electric-wire protection pipe comprising the tubular main portion and the curved partition wall as described above.
In the structures described above, making the tubular main portion and the curved partition wall of metal allows the electric-wire protection pipe to be provided with the first wiring path and the second wiring path that are each surrounded by conductive walls and thus have a shielding function. Moreover, the two wiring paths have shapes different from each other.
In the structures described above, when being bent along the reference plane that passes the axis of the tubular main portion in the first direction, the tubular main portion and the curved partition wall that constitute the electric-wire protection pipe have no corner portions serving as reinforced portions in the bending direction. Therefore, the tubular main portion and the curved partition wall have shapes that are easy to bend along the reference plane.
Moreover, when the electric-wire protection pipe is bent along the reference plane, the tubular main portion is deformed around the axis as substantially a center, and has a cross-section with a flattened shape. At that time, in the tubular main portion, a first width dimension in the first direction and the second direction is reduced, and a second width dimension in a direction orthogonal to the axis of the tubular main portion and the first direction is increased. At the same time, the curved partition wall is deformed, reducing its curvature by following the increase in the second width dimension of the tubular main portion. That is, the curved partition wall has a structure in which the tubular main portion is unlikely to be prevented from being bent along the reference plane.
Furthermore, when the curvature of the curved partition wall is reduced and the tubular main portion is caused to have a flattened shape by bending the electric-wire protection pipe along the reference plane, the cross-sectional shapes of the two wiring paths become slightly flattened, but the balance of the cross-sectional areas thereof is not significantly changed.
Accordingly, by using the wire harness according to the structures described above, while the ease of bending processing is secured in the electric-wire protection pipe provided with two wiring paths having a shielding function thereinside, it is possible to prevent the balance between the cross-sectional areas of the two wiring paths with shapes different from each other from being significantly changed at the bent portion.
Moreover, when the curved partition wall of the electric-wire protection pipe has symmetry with respect to the reference plane as described above, the balance between the cross-sectional areas of the two wiring paths with shapes different from each other is further prevented from being changed.
Furthermore, when marks are formed at portions along the lines on which the outer side surface of the tubular main portion and the reference plane intersect with each other as described above, the direction suitable for bending the electric-wire protection pipe can be easily confirmed.
Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. The following embodiments are merely specific examples of the present invention, and are not to restrict the technical scope of the present invention.
Electric-Wire Protection Pipe
First, a configuration of an electric-wire protection pipe 1 will be described with reference to
It is conceivable that the electric-wire protection pipe 1 is a tubular member made from a material containing aluminum, stainless steel, or the like as a main component. Moreover, it is conceivable that a plating layer or a paint layer is formed on the outer surface of the electric-wire protection pipe 1 as needed.
As shown in
In
It should be noted that
The curved partition wall 12 partitions the hollow portion of the tubular main portion 11 into a first wiring path 21 on the first direction R1 side and a second wiring path 22 on the second direction R2 side. The curved partition wall 12 connects to the tubular main portion 11 at border lines BL1 and BL2 that are located so as to be shifted to the first direction R1 side with respect to the axis R0 on the inner side surface of the tubular main portion 11.
The more the border lines BL1 and BL2, which are respective end portions of the curved partition wall 12, are shifted to the first direction R1 side, the larger a ratio of the cross-sectional area of the second wiring path 22 to the cross-sectional area of the first wiring path 21 becomes.
Furthermore, the entire cross-section of the curved partition wall 12 orthogonal to the axis R0 is curved, and the convex side of the curve projects in the second direction R2. In the examples shown in
Moreover, in this embodiment, the curved partition wall 12 has symmetry with respect to the reference plane F0. Accordingly, the pair of border lines BL1 and BL2 also has symmetry with respect to the reference plane F0. The electric-wire protection pipe 1 is formed by, for example, drawing processing or extrusion processing.
Moreover, in the examples shown in
As shown in
In the example shown in
Although the electric-wire protection pipe 1 shown in
Wire Harness
Next, a wire harness 10 according to an embodiment of the present invention will be described with reference to
The insulated electric wires 9 are each constituted by a core wire 9a that is made of a conductive material and an insulating coating 9b that is made of an insulating material and surrounds the core wire 9a. The end portion of the insulated electric wires 9 is often provided with a terminal fitting or a connector (not shown).
Moreover, the electric-wire protection pipe 1 included in the wire harness 10 has at least one bent portion 102 that has been bent along the reference plane F0. That is, in the wire harness 10, the electric-wire protection pipe 1 is constituted by a straight pipe portion 101 that has not been bent and the bent portion 102 that has been bent.
In the example shown in
As shown in
In the wire harness 10, first insulated electric wires 91 that pass through the first wiring path 21 and second insulated electric wires 92 that pass through the second wiring path 22 are different in type. For example, it is conceivable that one of the first insulated electric wire 91 and the second insulated electric wire 92 is an insulated electric wire 9 for a power system and the other is an insulated electric wire 9 for a low-current system (signal system).
As shown in
The electric-wire protection pipe 1 is bent, for example, after the insulated electric wires 9 are caused to pass through the two wiring paths 21 and 22. In this case, it is easy to cause the insulated electric wires 9 to pass through the two wiring paths 21 and 22. It should be noted that the electric-wire protection pipe 1 may be bent before the insulated electric wires 9 are caused to pass through the two wiring paths 21 and 22.
As shown in
Moreover, as shown in
Furthermore, as shown in
It should be noted that when the curvature of the curved partition wall 12 is too large, it becomes difficult to bend the curved partition wall 12 along the reference plane F0. Therefore, it is preferable that the curvature of the curved partition wall 12 is set to as a small value as possible within a range in which the tubular main portion 11 is not prevented from being flattened when the electric-wire protection pipe 1 is bent.
Effects
As described above, the electric-wire protection pipe 1 provided with the two wiring paths 21 and 22 that have a shielding function thereinside is provided by using the wire harness 10. Moreover, the ease of bending processing is secured in such an electric-wire protection pipe 1. Furthermore, when the electric-wire protection pipe 1 is used, it is possible to prevent the balance between the cross-sectional areas of the two wiring paths 21 and 22 with shapes different from each other from being significantly changed at the bent portion 102.
When the curved partition wall 12 has symmetry with respect to the reference plane F0 in the electric-wire protection pipe 1, the balance between the cross-sectional areas of the two wiring paths 21 and 22 with shapes different from each other is further prevented from being changed at the bent portion 102.
Moreover, in the electric-wire protection pipe 1, the marks 3 are formed at portions along the lines on which the outer side surface of the tubular main portion 11 and the reference plane F0 intersect with each other. Thereby, the direction suitable for bending the electric-wire protection pipe 1, that is, the direction along the reference plane F0 can be easily confirmed.
Other Considerations
In the electric-wire protection pipe 1, it is conceivable that the tubular main portion 11 has a tubular shape other than a cylindrical shape. For example, it is conceivable that the tubular main portion 11 has a tubular shape that has a cross-section with an oval shape. In the same manner, it is conceivable that the curved partition wall 12 has a cross-section with a shape other than a circular arc shape. For example, it is conceivable that the curved partition wall 12 has a cross-section with an elliptic arc shape.
Moreover, in the electric-wire protection pipe 1, it is conceivable that the marks 3 are formed at portions along the lines on which the outer side surface of the tubular main portion 11 and a plane that passes the axis R0 and is orthogonal to the reference plane F0 intersect with each other.
Number | Date | Country | Kind |
---|---|---|---|
2012-112540 | May 2012 | JP | national |
This application is a national stage application of PCT/JP2013/062580, international filing date Apr. 30, 2013, and claims priority to JP 2012-112540, filed in Japan on May 16, 2012, the entire disclosures of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/062580 | 4/30/2013 | WO | 00 |