Electrical adapter system

Information

  • Patent Grant
  • 9312634
  • Patent Number
    9,312,634
  • Date Filed
    Tuesday, April 22, 2014
    10 years ago
  • Date Issued
    Tuesday, April 12, 2016
    8 years ago
Abstract
An electrical system includes an electrical adapter and a stackable electrical adapter. The electrical adapter includes at least one of an electrical plug or an Edison screw base configured to receive a primary voltage, a voltage converter circuit configured to convert the primary voltage to the secondary voltage, and a first electrical connector part configured to be detachably coupled to a second electrical connector part of an electrical fixture configured to be powered by the secondary voltage. The stackable electrical adapter is configured to be powered by the secondary voltage, the first stackable electrical adapter having a first side and a second side opposite the first side. The electrical adapter is configured to be electrically connected to the first side of the first stackable electrical adapter or to an electrical fixture using a two part electrical connector to provide the secondary voltage, a ground, and a data signal, the electrical fixture is configured to be powered by the secondary voltage, where the second side of the stackable electrical adapter is configured to be electrically connected to the electrical fixture or to be daisy-chained to a second stackable electrical adapter using the two part electrical connector to provide the secondary voltage, a ground, and a data signal, the second stackable electrical adapter being configured to be electrically connected to the electrical adapter and the electrical fixture and to be daisy-chained to the first stackable electrical adapter using the two part electrical connector to provide the secondary voltage, a ground, and a data signal.
Description
FIELD OF THE INVENTION

The present invention relates generally to an electrical adapter system. More particularly, the present invention relates to an electrical adapter system including an electrical adapter for connecting to an electrical fixture.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.



FIG. 1A depicts an exemplary Edison screw light bulb socket and an exemplary Edison screw light bulb;



FIG. 1B depicts an exemplary electrical adapter system in accordance with the present invention comprising an electrical adapter and an exemplary electrical fixture;



FIG. 1C depicts an exemplary electrical outlet;



FIG. 1D depicts a front view of an exemplary multi-part electrical system in accordance with the present invention;



FIG. 1E depicts a back view of the exemplary electrical adapter system of FIG. 1D;



FIG. 1F depicts a front view of another exemplary electrical adapter system in accordance with the present invention;



FIG. 1G depicts a front view of yet another exemplary electrical adapter system in accordance with the present invention;



FIG. 1H depicts a back view of the exemplary electrical adapter system of FIG. 1G;



FIG. 1I depicts a front view of still another exemplary electrical adapter system in accordance with the present invention that includes a stackable adapter;



FIG. 1J depicts a back view of the exemplary electrical adapter system of FIG. 1I;



FIG. 2A depicts two exemplary components of a correlated magnetic electrical connector used to magnetically attach and electrically connect the electrical adapter and electrical fixture of an electrical adapter system in accordance with the present invention;



FIG. 2B depicts another two exemplary parts of a correlated magnetic electrical connector used to attach the parts of a electrical adapter system in accordance with the present invention;



FIG. 2C depicts yet another two exemplary components of a correlated magnetic electrical connector used to attach the parts of a electrical adapter system in accordance with the present invention;



FIG. 2D depicts an exemplary stackable adapter that can be used with the two exemplary components of the correlated magnetic electrical connector of FIG. 2A;



FIG. 2E depicts an exemplary stackable adapter that can be used with the two exemplary components of the correlated magnetic electrical connector of FIG. 2B;



FIG. 2F depicts an exemplary stackable adapter that can be used with the two exemplary components of the correlated magnetic electrical connector of FIG. 2C;



FIG. 3A depicts exemplary ring-shaped electrical contact portions and exemplary circularly-shaped correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 3B depicts exemplary circularly-shaped electrical contact portions and exemplary ring-shaped correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 3C depicts exemplary ring-shaped electrical contact portions and exemplary circularly-shaped and ring-shaped correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 3D depicts exemplary ring-shaped and circularly-shaped electrical contact portions and exemplary ring-shaped correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 4A depicts exemplary electrical contacts of exemplary ring-shaped electrical portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 4B depicts exemplary electrical contacts of exemplary circularly-shaped electrical portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 5A depicts exemplary circularly-shaped complementary correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 5B depicts exemplary ring-shaped complementary correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention;



FIG. 5C depicts another exemplary circularly-shaped multi-level correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention; and



FIG. 5D depicts exemplary ring-shaped multi-level correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.


The present invention provides an electrical adapter system. It involves magnetic techniques related to those described in U.S. Pat. No. 7,800,471, issued Sep. 21, 2010, U.S. Pat. No. 7,868,721, issued Jan. 11, 2011, U.S. Pat. No. 8,179,219, issued May 15, 2012, and U.S. Pat. No. 7,982,56, issued Jul. 19, 2011, which are all incorporated herein by reference in their entirety. The present invention may be applicable to systems and methods described in U.S. Pat. No. 7,681,256, issued Mar. 23, 2010, U.S. Pat. No. 7,750,781, issued Jul. 6, 2010, U.S. Pat. No. 7,755,462, issued Jul. 13, 2010, U.S. Pat. No. 7,812,698, issued Oct. 12, 2010, U.S. Pat. Nos. 7,817,002, 7,817,003, 7,817,004, 7,817,005, and 7,817,006, issued Oct. 19, 2010, U.S. Pat. No. 7,821,367, issued Oct. 26, 2010, U.S. Pat. Nos. 7,823,300 and 7,824,083, issued Nov. 2, 2010, U.S. Pat. No. 7,834,729, issued Nov. 16, 2010, U.S. Pat. No. 7,839,247, issued Nov. 23, 2010, U.S. Pat. Nos. 7,843,295, 7,843,296, and 7,843,297, issued Nov. 30, 2010, U.S. Pat. No. 7,893,803, issued Feb. 22, 2011, U.S. Pat. Nos. 7,956,711 and 7,956,712, issued Jun. 7, 2011, U.S. Pat. Nos. 7,951,068 and 7,958,575, issued Jun. 14, 2011, U.S. Pat. No. 7,963,818, issued Jun. 21, 2011, U.S. Pat. Nos. 8,015,752 and 8,016,330, issued Sep. 13, 2011, U.S. Pat. No. 8,035,260, issued Oct. 11, 2011, U.S. Pat. No. 8,115,581, issued Feb. 14, 2012, and U.S. patent application Ser. No. 12/895,589, filed Sep. 30, 2010, which are all incorporated by reference herein in their entirety. The invention may also incorporate techniques described in U.S. Provisional Patent Application 61/403,814, filed Sep. 22, 2010, U.S. Provisional Patent Application 61/455,820, filed Oct. 27, 2010, U.S. Provisional Patent Application 61/459,329, filed Dec. 10, 2010, U.S. Provisional Patent Application 61/459,994, filed Dec. 22, 2010, U.S. Provisional Patent Application 61/461,570, filed Jan. 21, 2011, and U.S. Provisional Patent Application 61/462,715, filed Feb. 7, 2011, which are all incorporated by reference herein in their entirety.


In accordance with one embodiment of the invention, an electrical adapter system comprises an electrical adapter and an electrical fixture. The electrical adapter provides an electrical connection to an Edison screw socket. The electrical adapter includes an Edison screw base, a voltage converter circuit, and a first electrical connector part.


The Edison screw base is configured to receive a primary voltage from a voltage source. The adapter receives the primary voltage, for example 120 VAC, from an Edison screw light bulb socket and converts the primary voltage using the voltage converter circuit as required to supply a secondary, typically lower, and optionally variable voltage required by the electrical fixture.


Voltage converter circuit is configured to convert the primary voltage to the secondary voltage. The voltage converter circuit may be a switched mode power supply such as a buck converter.


The first electrical connector part is configured to be detachably coupled to a second electrical connector part of an electrical fixture configured to be powered by the secondary voltage. The first electrical connector part and second electrical connector part form a two part correlated magnetic electrical connector connecting the electrical adapter and electrical fixture.


Under one arrangement, the two parts of the correlated magnetic electrical connector to have a fixed position when magnetically aligned. For example, the two parts are fixed (i.e., unable to move) within the electrical adapter and electrical fixtures. In another arrangement, at least one of the two parts of the correlated magnetic electrical connector can move within a bounded area(s) within the electrical adapter and/or the electrical fixture. A moveable part of the correlated magnetic electrical connector may be located to a position and then held in that position by a lock, which may be some mechanical means such as a set screw. Generally, any of various well known mechanical means can to “lock” and “unlock” a connector in accordance with the invention.


In an exemplary embodiment, the electrical adapter comprises a driver circuit and the electrical fixture comprises a light emitting diode (LED) lamp, where the driver circuit can provide a variable secondary voltage enabling control over the LED lamp brightness and power consumption.


In another embodiment, an electrical fixture 114 and/or an electrical adapter 112 (or stackable adapter 124) may comprise one or more of an audio input device 126a (e.g., a microphone), an audio output device 126b (e.g., a speaker), a video input device 126c (e.g., a movie camera), a video output device 126d (e.g., a display), a radar 126e (e.g., an ultra wideband radar), an environment sensor 126f (e.g., a temperature, moisture, carbon dioxide, radon, smoke, or other sensor), a network communications device 126g (e.g., a communications repeater device, a network router 126h, or a communications portal), a security sensor 126i (e.g., a motion sensor, infrared sensor, optical sensor, or other sensor), a light fixture 126j (e.g., Christmas tree lights), a timer device 126k, a remote control repeater device 126l, or a rechargeable battery 126m (e.g., to enable emergency lighting).


In a further embodiment, an electrical fixture 114 and/or an electrical adapter 112 (or stackable adapter 124) may function as part of a communication system 128a, a person/object/animal tracking system 128b, a security system 128c, an environment control system 128d, a environment monitoring system 128e, a gaming system 128f, an automation system 128g, or a media (e.g., audio, video) delivery system 128h. For example, an electrical adapter could include Blue Tooth or WiFi communications capabilities.


Under one arrangement, an electrical fixture 114 and/or an electrical adapter 112 (or stackable adapter 124) comprises at least one of a transponder 126n, a transmitter 126o, a receiver 126p, or an antenna 126q. Under another arrangement, an electrical adapter conveys communications signals via a wiring infrastructure to which an electrical outlet or an electrical fixture having an Edison screw light bulb socket is interfaced or otherwise connected. Under still another arrangement, an electrical adapter conveys tracking signals (e.g., time-domain reflectometry signals) via such a wiring infrastructure.


The magnetic sources employed in the invention may be permanent magnetic sources, electromagnets, electro-permanent magnets, or combinations thereof. Magnetic sources may be discrete magnets or may be printed into magnetizable material.



FIG. 1A depicts an exemplary Edison screw light bulb socket 102 and an exemplary Edison screw light bulb 100. The Edison screw light bulb 100 comprises a glass bulb portion 104 and an electrical male Edison screw base portion 106 that includes an electrical contact for receiving a voltage when placed (screwed) into the Edison screw light bulb socket 102. The electrical contact provides the voltage to a filament (not shown) inside the glass bulb portion 104 causing the light bulb 100 to produce light. The Edison screw light bulb socket 102 receives a voltage 108 from a primary voltage source, for example, a 120VAC voltage source. One skilled in the art will recognize that all sorts of Edison screw light bulb sockets 102 exist for use in the United States and/or in other countries that receive different voltages (e.g., 240VAC).



FIG. 1B depicts an exemplary electrical adapter system 110 in accordance with the present invention comprising an electrical adapter 112 and an exemplary electrical fixture 114. The electrical adapter 112 and electrical fixture 114 are connected physically and electrically using a first electrical connector part 116a and a second electrical connector part 116b. One skilled in the art will recognize that the electrical connection between the first and second electrical connector parts 116a 116b could be implemented using a plug and socket approach, an Edison screw socket approach, or any other electrical connector approach, whereby wiring, contacts, plugs, and sockets are not shown. Additionally, the shapes of the electrical adapter 112 and the electrical fixture 114 were arbitrarily chosen and can be shaped and sized as appropriate. Furthermore, although a single electrical fixture 114 is shown being attachable to an electrical adapter 112, two or more electrical fixtures 114 could be attachable to a single electrical adapter 112 having multiple first electrical connector parts 116a (not shown), where the driver circuitry of the electrical adapter could be configured to supply the same (or different) types of secondary voltage types as required to support the same (or different) voltage requirements of multiple electrical fixtures 114.



FIG. 1C depicts an exemplary electrical outlet 118 having two electrical sockets 120 for receiving electrical plugs (not shown) such as can be found on power cords for common electrical fixtures and electrical appliances including table lamps, televisions, computers, toasters, vacuum cleaners, and the like. One skilled in the art will recognize that the electrical outlet 118 could be a 120 VAC voltage source or any other voltage source available in the United States and/or in other countries (e.g., 240 VAC) and can conform to any of the many well known plug standards including Type A, Type B, Type C, Type D, Type E, Type F, Type E/F hybrid, Type G, Type H, Type I, Type J, Type K, Type L, Type M, or any other desired type.



FIG. 1D depicts a front view of an exemplary electrical adapter system 110 in accordance with the present invention. Instead of an Edison screw light bulb socket 102, the electrical adapter system 110 has a plug 122 able to connect into one of the electrical sockets 120 of the electrical outlet 118 of FIG. 1C.



FIG. 1E depicts a back view of the exemplary electrical adapter system 110 of FIG. 1D, which includes an optional electrical socket 120 enabling a person to connect the electrical adapter system 110 into an electrical socket 120 of an electrical outlet 118 while still providing an electrical socket 120 for receiving a plug such as a power cord for a vacuum cleaner. The electrical socket 120 outputs a voltage based on the primary voltage. For example, the electrical socket 120 may output a voltage with the same voltage as the primary voltage. The optional electrical socket 120 also enables two or more electrical adapter systems 110 to be daisy-chained to an electrical outlet 118. As such, multiple (perhaps different) electrical fixtures can be powered by a single electrical outlet 118.



FIG. 1F depicts a front view of another exemplary electrical adapter system 110 in accordance with the present invention, which is like the electrical adapter system 110 of FIGS. 1D and 1E except the plug 122 is on the bottom of the electrical adapter 112.



FIG. 1G depicts a front view of yet another exemplary electrical adapter system 110 in accordance with the present invention. As shown, the electrical adapter system 110 includes an electrical male Edison screw base portion 106 and an electrical plug 122 enabling the electrical adapter system 110 to be connected to either an Edison light bulb socket 102 or an electrical outlet 118.



FIG. 1H depicts a back view of the exemplary electrical adapter system 110 of FIG. 1G. As shown, the exemplary electrical adapter system 110 includes an optional electrical socket 120 enabling a plug of a device to be connected and/or enables daisy-chaining of multiple electrical adapter systems 110.



FIG. 1I depicts a front view of still another exemplary electrical adapter system 110 in accordance with the present invention that includes a stackable adapter 124. The first electrical connector part is configured to be detachably coupled to the stackable adapter 124. The stackable adapter 124 includes a third electrical connector part configured to be detachably coupled to the first electrical connector part of the electrical adapter and a fourth electrical connector part configured to be detachably coupled to the second electrical connector part of the electrical fixture. The third electrical connector part of the stackable adapter 124 may be identical to the second electrical connector part of the electrical fixture 114. The fourth electrical connector part of the stackable adapter 124 may be identical to the first electrical connector part of the electrical adapter 112.


The stackable adapter 124 is configured to reside between an electrical adapter 112 configured with an electrical plug 122 for connection into an electrical outlet. Alternatively, a stackable adapter 124 can be configured to reside between an electrical adapter 112 configured with an electrical male Edison screw base portion 106 enabling the electrical adapter system 110 to be connected to either an Edison light bulb socket 102. As described in relation to FIGS. 1G and 1H the stackable adapter 124 could be configured to reside between an electrical adapter configured to connect to an electrical outlet 118 or to an Edison light bulb socket 102. Moreover, multiple stackable adapters 120 can be placed between an electrical adapter 112 and an electrical fixture 114.



FIG. 1J depicts a back view of the exemplary electrical adapter system 110 of FIG. 1I having a stackable electrical adapter 124, where both adapters 112124 include an optional electrical socket 120. One skilled in the art will recognize that all sorts of combinations of electrical adapters 112, stackable adapters 124, and electrical fixtures 114 are possible as configured using various combinations of electrical sockets 120, electrical plugs 122, and electrical male Edison screw base portions 106.



FIG. 2A depicts two exemplary components 202a 202b of a correlated magnetic electrical connector used to magnetically attach and electrically connect the electrical adapter 112 and electrical fixture 114 of an electrical adapter system 110 in accordance with the present invention. As shown in FIG. 2A, the first electrical connector part 116a comprises a first correlated magnetic electrical connector component 202a and the second electrical connector part 116b comprises a second correlated magnetic electrical connector component 202b. As such, the first and second electrical connector parts 116a 116b serve as housings for and include electrical wiring/circuitry connecting to the respective first and second correlated magnetic electrical connector components 202a 202b. The first and second correlated magnetic electrical connector components 202a 202b are configured at or near the surface of the first and second electrical connector parts 116a 116b enabling them to be magnetically attached by aligning the first and second correlated magnetic electrical connector components 202a 202b using sideways translational movement. Once the first and second correlated magnetics connector components 202a 202b are magnetically attached, the electrical adapter 112 and the electrical fixture 114 of the electrical adapter system 110 are electrically connected.



FIG. 2B depicts another two exemplary components 202a 202b of a correlated magnetic electrical connector used to magnetically attach and electrically connect the electrical adapter 112 and electrical fixture 114 of an electrical adapter system 110 in accordance with the present invention. As shown in FIG. 2B, the second electrical connector part 116b and second correlated magnetic electrical connector 202b are recessed into the electrical fixture 114 to serve as a female portion of a male-female connector, whereby the first electrical connector part 116a and first correlated magnetic electrical connector 202a serve as the male portion of the male-female connector. Electrical wiring attached to the second correlated magnetic electrical connector 202b could reside in the electrical fixture 114 and could reside in the second electrical connector part 116b or the second electrical connector part 116b could merely act as a housing in which the second correlated magnetic electrical connector 202b resides and within which the first electrical connector part 116a and first correlated magnetic electrical connector 202a are inserted. One skilled in the art will recognized that the male-female connector approach prevents the use of sideways translational movement and instead requires up and down translational movement and (optionally) rotational movement.



FIG. 2C depicts yet another two exemplary components 202a 202b of a correlated magnetic electrical connector used to attach the electrical adapter 112 and electrical fixture 114 of an electrical adapter system 110 in accordance with the present invention. As shown in FIG. 2C, the first electrical connector part 116a and second correlated magnetic electrical connector 202a are recessed into the electrical adapter 112 to serve as a female portion of a male-female connector, whereby the second electrical connector part 116b and second correlated magnetic electrical connector 202b serve as the male portion of the male-female connector. Electrical wiring attached to the first correlated magnetic electrical connector 202a could reside in the electrical adapter 112 and could reside in the first electrical connector part 116a or the first electrical connector part 116a could merely act as a housing in which the first correlated magnetic electrical connector 202a resides and within which the second electrical connector part 116b and second correlated magnetic electrical connector 202b are inserted.



FIG. 2D depicts an exemplary stackable adapter 124 that can be used with the two exemplary components 202a 202b of the correlated magnetic electrical connector of FIG. 2A. As shown in FIG. 2D, the first component 202a of the correlated magnetic electrical connector of the exemplary stackable adapter 124 can connect to the second component 202b of the correlated magnetic electrical connector associated with the electrical fixture 114 of the electrical adapter systems 110 of FIGS. 2A-2C. Similarly, the second component 202b of the correlated magnetic electrical connector of the exemplary adapter 124 can connect to the first component 202a of the correlated magnetic electrical connector of the electrical adapter 112 of the electrical adapter systems 110 of FIGS. 2A-2C. Moreover, multiple stackable adapters 124 can be daisy-chained between an electrical fixture 114 and electrical adapter 112 of an electrical adapter system 110 in accordance with the present invention, whereby the first component 202a of the correlated magnetic electrical connector of the a first stackable adapter 124 will connect to the second component 202b of the correlated magnetic electrical connector of the second stackable adapter 124, and so on.



FIG. 2E depicts an exemplary stackable adapter 124 that can be used with the two exemplary components 202a 202b of the correlated magnetic electrical connector of FIG. 2B. In a manner similar to what has been described in relation to FIG. 2D, one or more stackable adapters 124 such as depicted in FIG. 2E can reside between the electrical adapter 112 and electrical fixture 114 of the electrical adapter systems 110 of FIG. 2A or 2B.



FIG. 2F depicts an exemplary stackable adapter 124 that can be used with the two exemplary components 202a 202b of the correlated magnetic electrical connector of FIG. 2C. In a manner similar to what has been described in relation to FIG. 2D, one or more stackable adapters 124 such as depicted in FIG. 2F can reside between the electrical adapter 112 and electrical fixture 114 of the electrical adapter systems 110 of FIG. 2A or 2C. An alternative stackable adapter 124 (not shown) could have exemplary components 202a 202b of a correlated magnetic electrical connector that both function as female portions of a male-female connector that could be used with the electrical adapter system 110 of FIG. 2A.



FIG. 3A depicts exemplary ring-shaped electrical contact portions 302a 302b and exemplary circularly-shaped correlated magnetic structure portions 304a 304b of two exemplary components 202a 202b of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown, electrical cables 306a 306b are connected to the ring-shaped electrical contact portions 302a 302b, respectively.



FIG. 3B depicts exemplary circularly-shaped electrical contact portions 308a 308b and exemplary ring-shaped correlated magnetic structure portions 310a 310b of two exemplary components 202a 202b of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown, electrical cables 306a 306b are connected to the circularly-shaped electrical contact portions 308a 308b, respectively.



FIG. 3C depicts exemplary ring-shaped electrical contact portions 302a 302b and exemplary circularly-shaped 304a 304b and ring-shaped 310a 310b correlated magnetic structure portions of two exemplary components 202a 202b of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown, electrical cables 306a 306b are connected to the ring-shaped electrical contact portions 302a 302b, respectively.



FIG. 3D depicts exemplary ring-shaped electrical contact portions 306a 306b and circularly-shaped electrical contact portions 302a 302b and exemplary ring-shaped correlated magnetic structure portions 306a 306b of two exemplary components 202a 202b of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown, electrical cables 306a 306b are connected to the ring-shaped electrical contact portions 302a 302b, respectively, and to the circularly-shaped electrical contact portions 308a 308b, respectively.



FIG. 4A depicts exemplary electrical contacts 402404406 of exemplary ring-shaped electrical portions of two exemplary components 302a 302b of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown in FIG. 4A, outermost ring-shaped electrical portions 402 indicated by two dashed circular lines surround middle ring-shaped electrical portions 404 indicated by two solid circular lines that surround the innermost ring-shaped electrical portions 406 indicated by two dotted circular lines. As such, when the two components 302a 302b are aligned and in contact, there corresponding electrical contact portions 402404406 become in contact providing three separate electrical connections, which could be used for example for power, ground, and communications. Generally, to practice the invention, at least two electrical contact portions are required to provide power and ground connectivity but one or more additional electrical contact portions can also be used for other purposes (e.g., for communications, to provide a control signal, or to provide a data signal). Communications connectivity may be used, for example, to identify to an electrical adapter the type of electrical fixture that has been connected to it (or vice versa), to provide sensor information, to provide control signals, etc. Alternatively, two or more electrical contact portions could be used to provide two or more different types of electrical power (e.g., different voltages).



FIG. 4B depicts exemplary electrical contacts of exemplary circularly-shaped electrical portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention. As with the electrical contacts of FIG. 4A, three different contact portions 402404406 are shown, which might correspond (in no particular order) to communications, power, and ground. As described in relation to FIG. 4A, all sorts of combinations are possible including multiple power connections for supplying different voltages, and so forth.



FIG. 5A depicts exemplary circularly-shaped complementary correlated magnetic structure portions 304a 304b of two exemplary components of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown in FIG. 5A, the correlated magnetic structure portions 304a 304b have complementary (i.e., mirror image) patterns of positive maxels 502 and negative maxels 504. The specific patterns used for the magnetic structure portions 304a 304b of a correlated magnetic electrical connector 300 can be selected to have only one rotational alignment where the maxels will all correlate. Alternatively, they may be coded to allow several different correlated positions (e.g., every 60 degrees). The coding pattern used in FIG. 5A comprises three concentric circles of maxels with the outer circle corresponding to four Barker 4 code modulos, the middle circle corresponding to two Barker 5 code modulos, and the innermost circle corresponding to a complementary Barker 4 code modulo.



FIG. 5B depicts exemplary ring-shaped complementary correlated magnetic structure portions 310a 310b of two exemplary components of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown in FIG. 5B, the correlated magnetic structure portions 310a 310b have complementary (i.e., mirror image) patterns of positive maxels 502 and negative maxels 504. As with the correlated magnetic portions 304a 304b of FIG. 5A, the specific patterns used for the magnetic structure portions 310a 310b of a correlated magnetic electrical connector 300 of FIG. 5B can be selected to have only one rotational alignment where the maxels will all correlate or they may be coded to allow several different fully or partially correlated positions. The coding may cause certain rotational alignments where a repel force is produced. Generally, all sorts of magnetic behaviors can be prescribed using correlated magnetics coding techniques. The coding pattern used in FIG. 5B comprises two concentric circles of maxels oriented in a radial pattern, where the two concentric circles each correspond to six code modulos of a Barker 3 code.



FIGS. 5C and 5D are representative of the use of multi-level correlated magnetic structures as the correlated magnetic structure portions of a correlated magnetic electrical connector. Multi-level correlated magnetic structures are described in U.S. patent application Ser. No. 12/885,450, filed Sep. 18, 2010, which is incorporated herein by reference. Generally, such multi-level correlated structures have first and second regions the produce different force vs. distance characteristics that combine to cause magnetic forces that transition from an attract state to a repel state depending on the distance the structures are separated.



FIG. 5C depicts exemplary circularly-shaped multi-level correlated magnetic structure portions 304a 304b of two exemplary components of a correlated magnetic electrical connector 300 in accordance with the present invention. As shown, the first circularly-shaped multi-level correlated magnetic structure portion 304a comprises a first region 506a and a second region 508a and the second circularly-shaped multi-level correlated magnetic structure portion 304b also comprises a first region 506b and a second region 508b that interact with the two regions 506a 508a of the first circularly-shaped multi-level correlated magnetic structure portion 304a to produce multi-level magnetism. As shown, the two first regions 506a 506b are ring-shaped and the second regions 508a 508b are circularly-shaped. Many other shapes of two or more regions could also be employed to produce multi-level magnetism.



FIG. 5D depicts exemplary ring-shaped multi-level correlated magnetic structure portions of two exemplary components of a correlated magnetic electrical connector in accordance with the present invention. As shown, the first ring-shaped multi-level correlated magnetic structure portion 310a comprises a first region 510a and a second region 512a and the second ring-shaped multi-level correlated magnetic structure portion 310b also comprises a first region 510b and a second region 512b that interact with the two regions 510a 512a of the first ring-shaped multi-level correlated magnetic structure portion 310a to produce multi-level magnetism. As shown, the two first regions 510a 512b are ring-shaped and the second regions 510a 512b are ring-shaped. Many other shapes of two or more regions could also be employed to produce multi-level magnetism.


Although, the exemplary connectors and associated magnetic structures have been described herein as being circularly-shaped and ring-shaped, one skilled in the art will recognize that other shapes including square, rectangular, or any other desired shape could be employed in accordance with the invention.


While particular embodiments of the invention have been described, it will be understood, however, that the invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.

Claims
  • 1. A stackable electrical adapter, comprising: one of a first electrical connector part that is located on a first side of said stackable electrical adapter, said first electrical connector part being configured to be detachably coupled to an electrical adapter, said electrical adapter comprising:at least one of an electrical plug or an Edison screw base configured to receive a primary voltage from a primary voltage source; anda voltage converter circuit configured to convert the primary voltage to a secondary voltage; andone of a second electrical connector part that is located on a second side of said stackable electrical adapter that is opposite said first side, said second electrical connector part being configured to be detachably coupled to an electrical fixture configured to be powered by the secondary voltage, each of said first electrical connector part and said second electrical connector part comprising:a first contact portion for providing a secondary voltage;a second contact portion for providing a ground; anda third contact portion for providing a data signal, said first, second, and third contact portions of each said first electrical connector part being configured to provide an electrical connection with said first, second, and third contact portions of each said second electrical connector part enabling daisy-chaining of multiple stackable electrical adapters.
  • 2. The stackable electrical adapter of claim 1, wherein said primary voltage source is an electrical socket of an electrical outlet.
  • 3. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises an audio input device.
  • 4. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises an audio output device.
  • 5. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a video input device.
  • 6. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a video output device.
  • 7. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a radar.
  • 8. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises an environment sensor.
  • 9. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a network communications device.
  • 10. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a security sensor.
  • 11. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a timer device.
  • 12. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a remote control repeater device.
  • 13. The stackable electrical adapter of claim 1, wherein said stackable electrical adapter comprises a rechargeable battery.
  • 14. The stackable electrical adapter of claim 1, wherein at least one of said stackable electrical adapter or said electrical fixture functions as part of one of a communication system, a tracking system, a security system, an environment control system, an environment monitoring system, a gaming system, an automation system, or a media delivery system.
  • 15. The stackable electrical adapter of claim 1, wherein at least one of said stackable electrical adapter or said electrical fixture comprises at least one of a transponder, a transmitter, a receiver, or an antenna.
  • 16. The stackable electrical adapter of claim 1, wherein said electrical adapter conveys signals via a wiring infrastructure to which said electrical plug is interfaced.
  • 17. An electrical adapter system, comprising: an electrical adapter, comprising: an electrical plug configured to receive a primary voltage from a primary voltage source;a voltage converter circuit configured to convert the primary voltage to a secondary voltage; andone of a first electrical connector part configured to be detachably coupled to one of a second electrical connector part of an electrical fixture configured to be powered by the secondary voltage; andat least one stackable electrical adapter configured to be placed between said electrical adapter and said electrical fixture, each said stackable electrical adapter of said at least one stackable electrical adapter having one of said first electrical connector part that is located on a first side and having one of said second electrical connector part that is located on a second side that is opposite said first side, each said first electrical connector part and each said second electrical connector part comprising: a first contact portion for providing said secondary voltage;a second contact portion for providing a ground; anda third contact portion for providing a data signal, said first, second, and third contact portions of each said first electrical connector part being configured to provide an electrical connection with said first, second, and third contact portions of each said second electrical connector part enabling daisy-chaining of multiple stackable electrical adapters between said electrical adapter and said electrical fixture.
  • 18. The electrical adapter system of claim 17, wherein the primary voltage is greater than the secondary voltage.
  • 19. The electrical adapter system of claim 17, wherein said electrical adapter further comprises another electrical socket that outputs a voltage based on the primary voltage.
  • 20. The electrical adapter system of claim 17, wherein said electrical fixture comprises a light emitting diode lamp, wherein the voltage converter circuit enables variation of the secondary voltage to control brightness and power consumption of the light emitting diode lamp.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. Nonprovisional application Ser. No. 13/430,219, filed Mar. 26, 2012, titled “Electrical Adapter System”, which claims the priority benefit of U.S. Provisional Application No. 61/465,801, filed Mar. 24, 2011, titled “Electrical Adapter System”. These applications are incorporated herein by reference in their entirety.

US Referenced Citations (402)
Number Name Date Kind
93931 Westcott Aug 1869 A
361248 Winton Apr 1887 A
493858 Edison Mar 1893 A
675323 Clark May 1901 A
687292 Armstrong Nov 1901 A
996933 Lindquist Jul 1911 A
1081462 Patton Dec 1913 A
1171351 Neuland Feb 1916 A
1236234 Troje Aug 1917 A
1252289 Murray, Jr. Jan 1918 A
1301135 Karasick Apr 1919 A
1312546 Karasick Aug 1919 A
1323546 Karasick Aug 1919 A
1554236 Simmons Jan 1920 A
1343751 Simmons Jun 1920 A
1624741 Leppke et al. Dec 1926 A
1784256 Stout Dec 1930 A
1895129 Jones Jan 1933 A
2048161 Klaiber Jul 1936 A
2147482 Butler Dec 1936 A
2186074 Koller Jan 1940 A
2240035 Catherall Apr 1941 A
2243555 Faus May 1941 A
2269149 Edgar Jan 1942 A
2327748 Smith Aug 1943 A
2337248 Koller Dec 1943 A
2337249 Koller Dec 1943 A
2389298 Ellis Nov 1945 A
2401887 Sheppard Jun 1946 A
2414653 lokholder Jan 1947 A
2438231 Schultz Mar 1948 A
2471634 Vennice May 1949 A
2475456 Norlander Jul 1949 A
2508305 Teetor May 1950 A
2513226 Wylie Jun 1950 A
2514927 Bernhard Jul 1950 A
2520828 Bertschi Aug 1950 A
2565624 phelon Aug 1951 A
2570625 Zimmerman et al. Oct 1951 A
2690349 Teetor Sep 1954 A
2694164 Geppelt Nov 1954 A
2964613 Williams Nov 1954 A
2701158 Schmitt Feb 1955 A
2722617 Cluwen et al. Nov 1955 A
2770759 Ahlgren Nov 1956 A
2837366 Loeb Jun 1958 A
2853331 Teetor Sep 1958 A
2888291 Scott et al. May 1959 A
2896991 Martin, Jr. Jul 1959 A
2932545 Foley Apr 1960 A
2935352 Heppner May 1960 A
2935353 Loeb May 1960 A
2936437 Fraser et al. May 1960 A
2962318 Teetor Nov 1960 A
3055999 Lucas Sep 1962 A
3089986 Gauthier May 1963 A
3102314 Alderfer Sep 1963 A
3151902 Ahlgren Oct 1964 A
3204995 Teetor Sep 1965 A
3208296 Baermann Sep 1965 A
3238399 Johanees et al. Mar 1966 A
3273104 Krol Sep 1966 A
3288511 Tavano Nov 1966 A
3301091 Reese Jan 1967 A
3351368 Sweet Nov 1967 A
3382386 Schlaeppi May 1968 A
3408104 Raynes Oct 1968 A
3414309 Tresemer Dec 1968 A
3425729 Bisbing Feb 1969 A
3468576 Beyer et al. Sep 1969 A
3474366 Barney Oct 1969 A
3500090 Baermann Mar 1970 A
3521216 Tolegian Jul 1970 A
3645650 Laing Feb 1972 A
3668670 Andersen Jun 1972 A
3684992 Huguet et al. Aug 1972 A
3690393 Guy Sep 1972 A
3696258 Anderson et al. Oct 1972 A
3790197 Parker Feb 1974 A
3791309 Baermann Feb 1974 A
3802034 Bookless Apr 1974 A
3803433 Ingenito Apr 1974 A
3808577 Mathauser Apr 1974 A
3836801 Yamashita et al. Sep 1974 A
3845430 Petkewicz et al. Oct 1974 A
3893059 Nowak Jul 1975 A
3976316 Laby Aug 1976 A
4079558 Gorham Mar 1978 A
4117431 Eicher Sep 1978 A
4129846 Yablochnikov Dec 1978 A
4209905 Gillings Jul 1980 A
4222489 Hutter Sep 1980 A
4296394 Ragheb Oct 1981 A
4340833 Sudo et al. Jul 1982 A
4352960 Dormer et al. Oct 1982 A
4355236 Holsinger Oct 1982 A
4399595 Yoon et al. Aug 1983 A
4416127 Gomez-Olea Naveda Nov 1983 A
4451811 Hoffman May 1984 A
4453294 Morita Jun 1984 A
4517483 Hucker et al. May 1985 A
4535278 Asakawa Aug 1985 A
4547756 Miller et al. Oct 1985 A
4629131 Podell Dec 1986 A
4645283 MacDonald et al. Feb 1987 A
4680494 Grosjean Jul 1987 A
381968 Tesla May 1988 A
4764743 Leupold et al. Aug 1988 A
4808955 Godkin et al. Feb 1989 A
4837539 Baker Jun 1989 A
4849749 Fukamachi et al. Jul 1989 A
4862128 Leupold Aug 1989 A
H0693 Leupold Oct 1989 H
4893103 Leupold Jan 1990 A
4912727 Schubert Mar 1990 A
4941236 Sherman et al. Jul 1990 A
4956625 Cardone et al. Sep 1990 A
4980593 Edmundson Dec 1990 A
4993950 Mensor, Jr. Feb 1991 A
4994778 Leupold Feb 1991 A
4996457 Hawsey et al. Feb 1991 A
5013949 Mabe, Jr. May 1991 A
5020625 Yamauchi et al. Jun 1991 A
5050276 Pemberton Sep 1991 A
5062855 Rincoe Nov 1991 A
5123843 Van der Zel et al. Jun 1992 A
5179307 Porter Jan 1993 A
5190325 Doss-Desouza Mar 1993 A
5213307 Perrillat-Amede May 1993 A
5302929 Kovacs Apr 1994 A
5309680 Kiel May 1994 A
5345207 Gebele Sep 1994 A
5349258 Leupold et al. Sep 1994 A
5367891 Furuyama Nov 1994 A
5383049 Carr Jan 1995 A
5394132 Poil Feb 1995 A
5399933 Tsai Mar 1995 A
5425763 Stemmann Jun 1995 A
5440997 Crowley Aug 1995 A
5461386 Knebelkamp Oct 1995 A
5485435 Matsuda et al. Jan 1996 A
5492572 Schroeder et al. Feb 1996 A
5495221 Post Feb 1996 A
5512732 Yagnik et al. Apr 1996 A
5570084 Ritter et al. Oct 1996 A
5582522 Johnson Dec 1996 A
5604960 Good Feb 1997 A
5631093 Perry et al. May 1997 A
5631618 Trumper et al. May 1997 A
5633555 Ackermann et al. May 1997 A
5635889 Stelter Jun 1997 A
5637972 Randall et al. Jun 1997 A
5730155 Allen Mar 1998 A
5742036 Schramm, Jr. et al. Apr 1998 A
5759054 Spadafore Jun 1998 A
5788493 Tanaka et al. Aug 1998 A
5838304 Hall Nov 1998 A
5852393 Reznik et al. Dec 1998 A
5935155 Humayun et al. Aug 1999 A
5956778 Godoy Sep 1999 A
5983406 Meyerrose Nov 1999 A
6000484 Zoretich et al. Dec 1999 A
6039759 Carpentier et al. Mar 2000 A
6047456 Yao et al. Apr 2000 A
6072251 Markle Jun 2000 A
6074420 Eaton Jun 2000 A
6104108 Hazelton et al. Aug 2000 A
6115849 Meyerrose Sep 2000 A
6118271 Ely et al. Sep 2000 A
6120283 Cousins Sep 2000 A
6125955 Zoretich et al. Oct 2000 A
6142779 Siegel et al. Nov 2000 A
6170131 Shin Jan 2001 B1
6187041 Garonzik Feb 2001 B1
6188147 Hazelton et al. Feb 2001 B1
6205012 Lear Mar 2001 B1
6210033 Karkos, Jr. et al. Apr 2001 B1
6224374 Mayo May 2001 B1
6234833 Tsai et al. May 2001 B1
6241069 Mazur et al. Jun 2001 B1
6273918 Yuhasz et al. Aug 2001 B1
6275778 Shimada et al. Aug 2001 B1
6285097 Hazelton et al. Sep 2001 B1
6387096 Hyde, Jr. May 2002 B1
6422533 Harms Jul 2002 B1
6433493 Ilyes et al. Aug 2002 B1
6457179 Prendergast Oct 2002 B1
6467326 Garrigus Oct 2002 B1
6535092 Hurley et al. Mar 2003 B1
6540515 Tanaka Apr 2003 B1
6561815 Schmidt May 2003 B1
6599321 Hyde, Jr. Jul 2003 B2
6607304 Lake et al. Aug 2003 B1
6652278 Honkura et al. Nov 2003 B2
6653919 Shih-Chung et al. Nov 2003 B2
6720698 Galbraith Apr 2004 B2
6747537 Mosteller Jun 2004 B1
6821126 Neidlein Nov 2004 B2
6841910 Gery Jan 2005 B2
6842332 Rubenson et al. Jan 2005 B1
6847134 Frissen et al. Jan 2005 B2
6850139 Dettmann et al. Feb 2005 B1
6862748 Prendergast Mar 2005 B2
6864773 Perrin Mar 2005 B2
6913471 Smith Jul 2005 B2
6927657 Wu Aug 2005 B1
6936937 Tu et al. Aug 2005 B2
6954968 Sitbon Oct 2005 B1
6971147 Halstead Dec 2005 B2
7009874 Deak Mar 2006 B2
7016492 Pan et al. Mar 2006 B2
7031160 Tillotson Apr 2006 B2
7033400 Currier Apr 2006 B2
7038565 Chell May 2006 B1
7065860 Aoki et al. Jun 2006 B2
7066739 McLeish Jun 2006 B2
7066778 Kretzschmar Jun 2006 B2
7097461 Neidlein Aug 2006 B2
7101374 Hyde, Jr. Sep 2006 B2
7135792 Devaney et al. Nov 2006 B2
7137727 Joseph et al. Nov 2006 B2
7148440 Gjerde Dec 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7224252 Meadow, Jr. et al. May 2007 B2
7264479 Lee Sep 2007 B1
7276025 Roberts et al. Oct 2007 B2
7311526 Rohrbach et al. Dec 2007 B2
7339790 Baker et al. Mar 2008 B2
7344380 Neidlein et al. Mar 2008 B2
7351066 DiFonzo et al. Apr 2008 B2
7358724 Taylor et al. Apr 2008 B2
7362018 Kulogo et al. Apr 2008 B1
7364433 Neidlein Apr 2008 B2
7381181 Lau et al. Jun 2008 B2
7402175 Azar Jul 2008 B2
7416414 Bozzone et al. Aug 2008 B2
7438726 Erb Oct 2008 B2
7444683 Prendergast et al. Nov 2008 B2
7453341 Hildenbrand Nov 2008 B1
7467948 Lindberg et al. Dec 2008 B2
7498914 Miyashita et al. Mar 2009 B2
7583500 Ligtenberg et al. Sep 2009 B2
7637746 Lindberg et al. Dec 2009 B2
7645143 Rohrbach et al. Jan 2010 B2
7658613 Griffin et al. Feb 2010 B1
7715890 Kim et al. May 2010 B2
7762817 Ligtenberg et al. Jul 2010 B2
7775567 Ligtenberg et al. Aug 2010 B2
7796002 Hashimoto et al. Sep 2010 B2
7799281 Cook et al. Sep 2010 B2
7808349 Fullerton et al. Oct 2010 B2
7812697 Fullerton et al. Oct 2010 B2
7817004 Fullerton et al. Oct 2010 B2
7828556 Rodrigues Nov 2010 B2
7832897 Ku Nov 2010 B2
7837032 Smeltzer Nov 2010 B2
7839246 Fullerton et al. Nov 2010 B2
7843297 Fullerton et al. Nov 2010 B2
7868721 Fullerton et al. Jan 2011 B2
7871272 Firman, II et al. Jan 2011 B2
7874856 Schriefer et al. Jan 2011 B1
7889037 Cho Feb 2011 B2
7901216 Rohrbach et al. Mar 2011 B2
7903397 McCoy Mar 2011 B2
7905626 Shantha et al. Mar 2011 B2
7997906 Ligenberg et al. Aug 2011 B2
8002585 Zhou Aug 2011 B2
8009001 Cleveland Aug 2011 B1
8050714 Fadell et al. Nov 2011 B2
8078224 Fadell et al. Dec 2011 B2
8078776 Novotney et al. Dec 2011 B2
8087939 Rohrbach et al. Jan 2012 B2
8099964 Saito et al. Jan 2012 B2
8138869 Lauder et al. Mar 2012 B1
8143982 Lauder et al. Mar 2012 B1
8143983 Lauder et al. Mar 2012 B1
8165634 Fadell et al. Apr 2012 B2
8177560 Rohrbach et al. May 2012 B2
8187006 Rudisill et al. May 2012 B2
8190205 Fadell et al. May 2012 B2
8242868 Lauder et al. Aug 2012 B2
8253518 Lauder et al. Aug 2012 B2
8264310 Lauder et al. Sep 2012 B2
8264314 Sankar Sep 2012 B2
8271038 Fadell et al. Sep 2012 B2
8271705 Novotney et al. Sep 2012 B2
8297367 Chen et al. Oct 2012 B2
8344836 Lauder et al. Jan 2013 B2
8348678 Hardisty et al. Jan 2013 B2
8354767 Pennander et al. Jan 2013 B2
8390411 Lauder et al. Mar 2013 B2
8390412 Lauder et al. Mar 2013 B2
8390413 Lauder et al. Mar 2013 B2
8395465 Lauder et al. Mar 2013 B2
8398409 Schmidt Mar 2013 B2
8435042 Rohrbach et al. May 2013 B2
8454372 Lee et al. Jun 2013 B2
8467829 Fadell et al. Jun 2013 B2
8497753 DiFonzo et al. Jul 2013 B2
8514042 Lauder et al. Aug 2013 B2
8535088 Gao et al. Sep 2013 B2
8576031 Lauder et al. Nov 2013 B2
8576034 Bilbrey et al. Nov 2013 B2
8616362 Browne et al. Dec 2013 B1
8648679 Lauder et al. Feb 2014 B2
8665044 Lauder et al. Mar 2014 B2
8665045 Lauder et al. Mar 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8702316 DiFonzo et al. Apr 2014 B2
8734024 Isenhour et al. May 2014 B2
8734165 Neel May 2014 B2
8752200 Varshavsky et al. Jun 2014 B2
8757893 Isenhour et al. Jun 2014 B1
8770857 DiFonzo et al. Jul 2014 B2
8774577 Benjamin et al. Jul 2014 B2
8781273 Benjamin et al. Jul 2014 B2
8836224 Chen et al. Sep 2014 B2
20020125977 VanZoest Sep 2002 A1
20030136837 Amon et al. Jul 2003 A1
20030170976 Molla et al. Sep 2003 A1
20030179880 Pan et al. Sep 2003 A1
20030187510 Hyde Oct 2003 A1
20040003487 Reiter Jan 2004 A1
20040155748 Steingroever Aug 2004 A1
20040244636 Meadow et al. Dec 2004 A1
20040251759 Hirzel Dec 2004 A1
20050102802 Sitbon et al. May 2005 A1
20050196484 Khoshnevis Sep 2005 A1
20050231046 Aoshima Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050263549 Scheiner Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060066428 McCarthy et al. Mar 2006 A1
20060105586 Zhang et al. May 2006 A1
20060189259 Park et al. Aug 2006 A1
20060198047 Xue et al. Sep 2006 A1
20060198998 Raksha et al. Sep 2006 A1
20060214756 Elliott et al. Sep 2006 A1
20060290451 Prendergast et al. Dec 2006 A1
20060293762 Schulman et al. Dec 2006 A1
20070072476 Milan Mar 2007 A1
20070075594 Sadler Apr 2007 A1
20070103266 Wang et al. May 2007 A1
20070138806 Ligtenberg et al. Jun 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070267929 Pulnikov et al. Nov 2007 A1
20080119250 Cho et al. May 2008 A1
20080139261 Cho et al. Jun 2008 A1
20080174392 Cho Jul 2008 A1
20080181804 Tanigawa et al. Jul 2008 A1
20080186683 Ligtenberg et al. Aug 2008 A1
20080218299 Arnold Sep 2008 A1
20080224806 Ogden et al. Sep 2008 A1
20080272868 Prendergast et al. Nov 2008 A1
20080282517 Claro Nov 2008 A1
20090011652 Koh Jan 2009 A1
20090021333 Fiedler Jan 2009 A1
20090209173 Arledge et al. Aug 2009 A1
20090250576 Fullerton et al. Oct 2009 A1
20090251256 Fullerton et al. Oct 2009 A1
20090254196 Cox et al. Oct 2009 A1
20090278642 Fullerton et al. Nov 2009 A1
20090289090 Fullerton et al. Nov 2009 A1
20090289749 Fullerton et al. Nov 2009 A1
20090292371 Fullerton et al. Nov 2009 A1
20100033280 Bird et al. Feb 2010 A1
20100126857 Polwart et al. May 2010 A1
20100167576 Zhou Jul 2010 A1
20110026203 Ligtenberg et al. Feb 2011 A1
20110085157 Bloss et al. Apr 2011 A1
20110101088 Marguerettaz et al. May 2011 A1
20110210636 Kuhlmann-Wilsdorf Sep 2011 A1
20110234344 Fullerton et al. Sep 2011 A1
20110248806 Michael Oct 2011 A1
20110279206 Fullerton et al. Nov 2011 A1
20120007704 Nerl Jan 2012 A1
20120021619 Bilbrey et al. Jan 2012 A1
20120028480 Bilbrey et al. Feb 2012 A1
20120064309 Kwon et al. Mar 2012 A1
20120085753 Fitch et al. Apr 2012 A1
20120146513 Radermacher Jun 2012 A1
20120235519 Dyer et al. Sep 2012 A1
20120244732 Fullerton et al. Sep 2012 A1
20130001745 Iwaki Jan 2013 A1
20130186209 Herbst Jul 2013 A1
20130186473 Mankame et al. Jul 2013 A1
20130186807 Browne et al. Jul 2013 A1
20130187538 Herbst Jul 2013 A1
20130192860 Puzio et al. Aug 2013 A1
20130207758 Browne et al. Aug 2013 A1
20130252375 Yi et al. Sep 2013 A1
20130256274 Faulkner Oct 2013 A1
20130279060 Nehl Oct 2013 A1
20130305705 Ac et al. Nov 2013 A1
20130341137 Mandame et al. Dec 2013 A1
20140044972 Menassa et al. Feb 2014 A1
20140072261 Isenhour et al. Mar 2014 A1
20140152252 Wood et al. Jun 2014 A1
20140205235 Benjamin et al. Jul 2014 A1
20140221741 Wang et al. Aug 2014 A1
20140235075 Kim et al. Aug 2014 A1
20140350701 Underwood Nov 2014 A1
Foreign Referenced Citations (22)
Number Date Country
1615573 May 2005 CN
2938782 Apr 1981 DE
0 345 554 Dec 1989 EP
0 545 737 Jun 1993 EP
823395 Jan 1938 FR
1 495 677 Dec 1977 GB
S57-55908 Apr 1982 JP
S57-189423 Dec 1982 JP
60-091011 Jun 1985 JP
60-221238 Nov 1985 JP
64-30444 Feb 1989 JP
2001-328483 Nov 2001 JP
2006210269 Aug 2006 JP
2008035676 Feb 2008 JP
2008165974 Jul 2008 JP
05-038123 Oct 2012 JP
101265730 May 2013 KR
WO-0231945 Apr 2002 WO
WO-2007081830 Jul 2007 WO
WO-2009124030 Oct 2009 WO
WO-2010141324 Dec 2010 WO
2013088143 Jun 2013 WO
Non-Patent Literature Citations (72)
Entry
C. Pompermaier, L. Sjoberg, and G. Nord, Design and Optimization of a Permanent Magnet Transverse Flux Machine, XXth International Conference on Electrical Machines, Sep. 2012, p. 606, IEEE Catalog No. CFP1290B-PRT, ISBN: 978-1-4673-0143-5.
V. Rudnev, An Objective Assessment of Magnetic Flux Concentrators, HET Trating Progress, Nov./Dec. 2004, p. 19-23.
International Search Report and Written Opinion for International PCT Application No. PCT/US2014/058294, mailed Jan. 5, 2015, 9 pages.
Atallah, K., Calverley, S.D., D. Howe, 2004, “Design, analysis and realisation of a high-performance magnetic gear”, IEE Proc.-Electr. Power Appl., vol. 151, No. 2, Mar. 2004.
Atallah, K., Howe, D. 2001, “A Novel High-Performance Magnetic Gear”, IEEE Transactions on Magnetics, vol. 37, No. 4, Jul. 2001, p. 2844-46.
Bassani, R., 2007, “Dynamic Stability of Passive Magnetic Bearings”, Nonlinear Dynamics, V. 50, p. 161-68.
BNS 33 Range, Magnetic safety sensors, Rectangular design, http://www.farnell.com/datasheets/36449.pdf, 3 pages, date unknown.
Boston Gear 221S-4, One-stage Helical Gearbox, http://www.bostongear.com/pdf/product—sections/200—series—helical.pdf, referenced Jun. 2010.
Charpentier et al., 2001, “Mechanical Behavior of Axially Magnetized Permanent-Magnet Gears”, IEEE Transactions on Magnetics, vol. 37, No. 3, May 2001, p. 1110-17.
Chau et al., 2008, “Transient Analysis of Coaxial Magnetic Gears Using Finite Element Comodeling”, Journal of Applied Physics, vol. 103.
Choi et al., 2010, “Optimization of Magnetization Directions in a 3-D Magnetic Structure”, IEEE Transactions on Magnetics, vol. 46, No. 6, Jun. 2010, p. 1603-06.
Correlated Magnetics Research, 2009, Online Video, “Innovative Magnetics Research in Huntsville”, http://www.youtube.com/watch?v=m4m81JjZCJo.
Correlated Magnetics Research, 2009, Online Video, “Non-Contact Attachment Utilizing Permanent Magnets”, http://www.youtube.com/watch?v=3xUm25CNNgQ.
Correlated Magnetics Research, 2010, Company Website, http://www.correlatedmagnetics.com.
Furlani 1996, “Analysis and optimization of synchronous magnetic couplings”, J. Appl. Phys., vol. 79, No. 8, p. 4692.
Furlani 2001, “Permanent Magnet and Electromechanical Devices”, Academic Press, San Diego.
Furlani, E.P., 2000, “Analytical analysis of magnetically coupled multipole cylinders”, J. Phys. D: Appl. Phys., vol. 33, No. 1, p. 28-33.
General Electric DP 2.7 Wind Turbine Gearbox, http://www.gedrivetrain.com/insideDP27.cfm, referenced Jun. 2010.
Ha et al., 2002, “Design and Characteristic Analysis of Non-Contact Magnet Gear for Conveyor by Using Permanent Magnet”, Conf. Record of the 2002 IEEE Industry Applications Conference, p. 1922-27.
Huang et al., 2008, “Development of a Magnetic Planetary Gearbox”, IEEE Transactions on Magnetics, vol. 44, No. 3, p. 403-12.
International Search Report and Written Opinion dated Jun. 1, 2009, directed to counterpart application No. PCT/US2009/002027. (10 pages).
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US12/61938 dated Feb. 26, 2013.
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/028095 dated May 13, 2013.
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/047986 dated Nov. 21, 2013.
International Search Report and Written Opinion, dated Apr. 8, 2011 issued in related International Application No. PCT/US2010/049410.
International Search Report and Written Opinion, dated Aug. 18, 2010, issued in related International Application No. PCT/US2010/036443.
International Search Report and Written Opinion, dated Jul. 13, 2010, issued in related International Application No. PCT/US2010/021612.
International Search Report and Written Opinion, dated May 14, 2009, issued in related International Application No. PCT/US2009/038925.
Jian et al., “Comparison of Coaxial Magnetic Gears With Different Topologies”, IEEE Transactions on Magnetics, vol. 45, No. 10, Oct. 2009, p. 4526-29.
Jian, L., Chau, K.T., 2010, “A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays”, IEEE Transactions on Energy Conversion, vol. 25, No. 2, Jun. 2010, p. 319-28.
Jørgensen et al., “The Cycloid Permanent Magnetic Gear”, IEEE Transactions on Industry Applications, vol. 44, No. 6, Nov./Dec. 2008, p. 1659-65.
Jørgensen et al., 2005, “Two dimensional model of a permanent magnet spur gear”, Conf. Record of the 2005 IEEE Industry Applications Conference, p. 261-5.
Kim, “A future cost trends of magnetizer systems in Korea”, Industrial Electronics, Control, and Instrumentation, 1996, vol. 2, Aug. 5, 1996, pp. 991-996.
Krasil'nikov et al., 2008, “Calculation of the Shear Force of Highly Coercive Permanent Magnets in Magnetic Systems With Consideration of Affiliation to a Certain Group Based on Residual Induction”, Chemical and Petroleum Engineering, vol. 44, Nos. 7-8, p. 362-65.
Krasil'nikov et al., 2009, “Torque Determination for a Cylindrical Magnetic Clutch”, Russian Engineering Research, vol. 29, No. 6, pp. 544-547.
Liu et al., 2009, “Design and Analysis of Interior-magnet Outer-rotor Concentric Magnetic Gears”, Journal of Applied Physics, vol. 105.
Lorimer, W., Hartman, A., 1997, “Magnetization Pattern for Increased Coupling in Magnetic Clutches”, IEEE Transactions on Magnetics, vol. 33, No. 5, Sep. 1997.
Mezani, S., Atallah, K., Howe, D. , 2006, “A high-performance axial-field magnetic gear”, Journal of Applied Physics vol. 99.
Mi, “Magnetreater/Charger Model 580” Magnetic Instruments Inc. Product specification, May 4, 2009, http://web.archive.org/web/20090504064511/http://www.maginst.com/specifications/580—magnetreater.htm, 2 pages.
Neugart PLE-160, One-Stage Planetary Gearbox, http://www.neugartusa.com/ple—160—gb.pdf, referenced Jun. 2010.
Series BNS, Compatible Series AES Safety Controllers, http://www.schmersalusa.com/safety—controllers/drawings/aes.pdf, pp. 159-175, date unknown.
Series BNS-B20, Coded-Magnet Sensorr Safety Door Handle, http://www.schmersalusa.com/catalog—pdfs/BNS—B20.pdf, 2pages, date unknown.
Series BNS333, Coded-Magnet Sensors with Integral Safety Control Module, http://www.schmersalusa.com/machine—guarding/coded—magnet/drawings/bns333.pdf, 2 pages, date unknown.
Tsurumoto 1992, “Basic Analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet”, IEEE Translation Journal on Magnetics in Japan, Vo 7, No. 6, Jun. 1992, p. 447-52.
United States Office Action issued in U.S. Appl. No. 13/104,393 dated Apr. 4, 2013.
United States Office Action issued in U.S. Appl. No. 13/236,413 dated Jun. 6, 2013.
United States Office Action issued in U.S. Appl. No. 13/246,584 dated May 16, 2013.
United States Office Action issued in U.S. Appl. No. 13/246,584 dated Oct. 15, 2013.
United States Office Action issued in U.S. Appl. No. 13/374,074 dated Feb. 21, 2013.
United States Office Action issued in U.S. Appl. No. 13/430,219 dated Aug. 13, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Aug. 8, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Jan. 7, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Nov. 8, 2013.
United States Office Action issued in U.S. Appl. No. 13/529,520 dated Sep. 28, 2012.
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Mar. 22, 2013.
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Oct. 29, 2013.
United States Office Action issued in U.S. Appl. No. 13/718,839 dated Dec. 16, 2013.
United States Office Action issued in U.S. Appl. No. 13/855,519 dated Jul. 17, 2013.
United States Office Action issued in U.S. Appl. No. 13/928,126 dated Oct. 11, 2013.
United States Office Action, dated Aug. 26, 2011, issued in counterpart U.S. Appl. No. 12/206,270.
United States Office Action, dated Feb. 2, 2011, issued in counterpart U.S. Appl. No. 12/476,952.
United States Office Action, dated Mar. 12, 2012, issued in counterpart U.S. Appl. No. 12/206,270.
United States Office Action, dated Mar. 9, 2012, issued in counterpart U.S. Appl. No. 13/371,280.
United States Office Action, dated Oct. 12, 2011, issued in counterpart U.S. Appl. No. 12/476,952.
Wikipedia, “Barker Code”, Web article, last modified Aug. 2, 2008, 2 pages.
Wikipedia, “Bitter Electromagnet”, Web article, last modified Aug. 2011, 1 page.
Wikipedia, “Costas Array”, Web article, last modified Oct. 7, 2008, 4 pages.
Wikipedia, “Gold Code”, Web article, last modified Jul. 27, 2008, 1 page.
Wikipedia, “Golomb Ruler”, Web article, last modified Nov. 4, 2008, 3 pages.
Wikipedia, “Kasami Code”, Web article, last modified Jun. 11, 2008, 1 page.
Wikipedia, “Linear feedback shift register”, Web article, last modified Nov. 11, 2008, 6 pages.
Wikipedia, “Walsh Code”, Web article, last modified Sep. 17, 2008, 2 pages.
Related Publications (1)
Number Date Country
20140227896 A1 Aug 2014 US
Provisional Applications (1)
Number Date Country
61465801 Mar 2011 US
Continuations (1)
Number Date Country
Parent 13430219 Mar 2012 US
Child 14258787 US