The subject matter herein relates generally to electrical assemblies having threaded coupling nuts for securing connectors or connector pieces together.
Some conventional electrical connectors are secured together using a threaded coupling nut. For example, some applications include a male connector connected to a female connector using a threaded coupling nut. Other applications include a backshell or adaptor coupled to a front, mating piece using a threaded coupling nut. The threaded coupling nut is freely rotatable about an end of one connector or connector piece. The threaded coupling nut typically has internal threads that are threadably coupled to external threads of another connector or connector piece. A cable extends from the rear of the connector or connector piece. However the cables may be damaged at the cable exit, such as by being subjected to excessive strain at the cable exit or by over-bending, such as beyond a bend limit for the cable.
To protect the cables, some known connectors provide a cable clamp at the back end of the connector. However, known connectors having cable clamps are not without disadvantages. For example, the cable clamps do not clamp the cables uniformly around the perimeter of the cables. The non-uniform clamping pressure can result in excessive stress on some of the conductors of the cable, causing premature failure of the cable. The non-uniform clamping pressure may distort the cable, which may distort sealing glands in which the conductors are located compromising the sealing effectiveness and allowing for fluid ingress that can cause corrosion, dielectric breakdown or shorting.
A need remains for an electrical assembly that provides sufficient clamping pressure on the cable while avoiding excessive stresses on the conductors of the cable.
In one embodiment, an electrical assembly is provided including a backshell having a coupling nut defining a cavity and a cable follower received in the cavity and extending rearward from the coupling nut. The cable follower has a plurality of rearward extending spring fingers extending to distal ends. The spring fingers define a cable channel configured to receive a cable. The spring fingers are deflectable and are spring biased against the cable to provide a clamping force against the cable. The spring fingers are tapered inward to the distal ends to define a generally conical shaped cable channel. The spring fingers are spring biased against the cable in different radial directions to substantially center the cable in the cable channel. The electrical assembly includes a retention feature coupled between the cable follower and the coupling nut. The retention feature allows the coupling nut to be rotatably coupled to the cable follower such that the coupling nut is rotatable relative to the cable, the coupling nut being configured to be coupled to a front shell of the electrical assembly.
In another embodiment, an electrical assembly is provided including a backshell having a coupling nut defining a cavity, a cavity insert received in the cavity and a cable follower received in the cavity and extending rearward from the coupling nut for supporting a cable. The cavity insert has a braid lip configured to be mechanically and electrically coupled to a cable braid of the cable. The cavity insert has a keying feature configured to engage the cable follower to secure the relative position of the cavity insert with respect to the cable follower. The cable follower has a plurality of rearward extending spring fingers extending to distal ends. The spring fingers define a cable channel configured to receive the cable. The spring fingers are deflectable and spring biased against the cable to provide a clamping force against the cable. The spring fingers are tapered inward to the distal ends to define a generally conical shaped cable channel. The spring fingers are spring biased against the cable in different radial directions to substantially center the cable in the cable channel. The coupling nut is rotatably coupled to the cable follower such that the coupling nut is rotatable relative to the cable. The coupling nut is configured to be coupled to a front shell of the electrical assembly.
In a further embodiment, an electrical assembly is provided including a backshell having a coupling nut defining a cavity and a cable follower received in the cavity and extending rearward from the coupling nut. The cable follower has ratchet slots at a front end of the cable follower. The cable follower has a plurality of rearward extending spring fingers extending to distal ends. The spring fingers define a cable channel configured to receive a cable. The spring fingers are deflectable and are spring biased against the cable to provide a clamping force against the cable. The spring fingers are tapered inward to the distal ends to define a generally conical shaped cable channel. The spring fingers are spring biased against the cable in different radial directions to substantially center the cable in the cable channel. The electrical assembly includes a retention feature coupled between the cable follower and the coupling nut. The retention feature has a ratchet feature operably received in the ratchet slots to rotatably fix the coupling nut to the cable follower at defined ratchet positions. The retention feature allows the coupling nut to be rotatably coupled to the cable follower such that the coupling nut is rotatable relative to the cable, the coupling nut being configured to be coupled to a front shell of the electrical assembly.
In an exemplary embodiment, the connector portion 12 defines a backshell and may be referred to hereinafter as a backshell 12. The backshell 12 is a connector accessory or an adapter that directs wires or conductors of a cable 18 into the front end connector. In such embodiments, the backshell 12 may provide strain relief for the conductors and the cable 18. The backshell 12 may be electrically grounded to the cable 18, such as a cable braid or cable shield, and may be electrically grounded to the front end connector 14, such as a housing of the front end connector 14. In such embodiments, the connector portion 14 defines a front shell and may be referred to hereinafter as a front shell 14. The front shell 14 holds contacts, terminals or a circuit board defining a mating interface configured to be mated to another connector assembly.
The second connector portion 14 includes a connector body or housing 20 with a first end 22 and a second end 24 opposite the first end 22. The connector portion 12 is configured to be coupled to the first end 22. In an exemplary embodiment, the second connector portion 14 has a threaded area 26 at the first end 22. The connector portion 12 is threadably coupled to the threaded area 26, such as by a threaded coupling nut. In the illustrated embodiment, the connector portion 12 and the second connector portion 14 are connector pieces joined together to define a single electrical connector configured to be mated with another electrical connector at the second end 24. The conductors extend from the first end 22 as a cable bundle and pass through the connector portion 12. Alternatively, the connector portions 12, 14 may be separate connectors mated together and the cable may extend from the second end 24 of the second connector portion 14 with a separate cable extending from the connector portion 12.
The first connector portion 12 extends between a mating end 32 at a front and a cable end 34 at a rear opposite the mating end 32. The mating end 32 of the first connector portion 12 includes a threaded coupling nut 50 that is threadably coupled to the threaded area 26 at the first end 22 of the second connector portion 14.
In the illustrated embodiment, the connector portions 12, 14 are connector pieces joined together to define a single electrical connector 38 having a housing 40. The housing 40 is defined by the connector portions 12, 14. For example, the backshell 12 is coupled to the front shell 14 to define the housing 40 of the electrical connector 38. The cable 18 passes through the backshell 12 into the front shell 14 where the conductors are terminated to corresponding contacts or terminals (not shown) or to a circuit board. The backshell 12 secures the cable 18 to the front shell 14 and protects the conductors from forces that may be imposed on the cable 18 and/or the electrical assembly 10. The cable end 34 defines a cable end 42 of the housing 40. The second end 24 of the front shell 14 defines a mating end 44 of the housing 40. Optionally, the mating end 44 may be threaded. The mating end 44 may define a plug or a receptacle for mating with another electrical connector assembly. The backshell 12 prevents the cable 18 from being damaged from external elements. The backshell 12 may also provide electromagnetic shielding for the conductors. For example, the backshell 12 may be electrically terminated to a cable braid or cable shield of the cable 18.
The coupling nut 50 extends between a front 60 and a rear 62. The cavity 52 extends along a cavity axis 82 between the front 60 and the rear 62. The cable 18 may pass into and/or through the cavity 52 along the cavity axis 82. The cavity axis 82 may be parallel to a mating direction of the backshell 12 with the front shell 14.
The coupling nut 50 includes a plurality of flat surfaces 64 around the perimeter of the coupling nut 50 that may be engaged by a tool used to rotate the coupling nut 50 for tightening or untightening the coupling nut 50 from the second connector portion 14. In an exemplary embodiment, the coupling nut 50 is a hexagonal shaped nut having six flat surfaces 64. Optionally, the interior of the coupling nut 50 may be generally cylindrical shaped and may be threaded.
In an exemplary embodiment, the backshell 12 includes a ratchet feature 66 used to rotatably fix the coupling nut 50 to the cable follower 56 at defined ratchet positions. For example, the ratchet feature 66 may include a ball bearing 68 and a spring 70 engaging the ball bearing 68. The ball bearing 68 may be received in ratchet slots 72 on the cable follower 56, which may be at or near the front end of the cable follower 56. The ratchet feature 66 is received in an opening 74 in the coupling nut 50. The ratchet feature 66 may be part of a retention feature 76 used to retain the coupling nut 50 to the cable follower 56.
In an exemplary embodiment, the retention feature 76 is used to secure the ratchet feature 66 in the opening 74. The coupling nut 50 includes a pocket 78 that receives the retention feature 76. Optionally, the retention feature 76 may be retained in the pocket 78 using a pin 80 configured to be received in the coupling nut 50, such as into the rear 62 of the coupling nut 50. The retention feature 76 may be rotatable with the coupling nut 50 relative to the cable follower 56. In an exemplary embodiment, the retention feature 76 is used to retain the coupling nut 50 on the cable follower 56. For example, the retention feature 76 may hold an axial position of the coupling nut 50 on the cable follower 56. In an exemplary embodiment, the retention feature 76 may be rotatably coupled to the cable follower 56 to allow the coupling nut 50 to rotate relative to the cable follower 56, as described in further detail below.
The cavity insert 54 extends between a front 90 and a rear 92. The cavity insert 54 is configured to be received in the cable follower 56. In an exemplary embodiment, the cavity insert 54 includes a plurality of anti-rotation teeth 94 at the front 90 configured to resist rotation of the cavity insert 54 and the cable follower 56 relative to the front shell 14. For example, the anti-rotation teeth 94 may mesh with or dig into a portion of the front shell 14 to resist rotation thereof.
In an exemplary embodiment, the cavity insert 54 includes a braid lip 96 at the rear 92. The braid lip 96 is configured to be mechanically and electrically coupled to a cable braid of the cable 18 (shown in
In an exemplary embodiment, the cavity insert 54 includes one or more keying features 98 configured to engage the cable follower 56 to secure the relative position of the cavity insert 54 with respect to the cable follower 56. For example, the keying feature 98 may engage the cable follower 56 to resist rotation of the cavity insert 54 relative to the cable follower 56.
The cable follower 56 extends between a front 100 and a rear 102. The cable follower 56 has a base ring 104 at the front 100 and a plurality of spring fingers 106 extending rearward from the base ring 104 to distal ends 108 at the rear 102. The spring fingers 106 surround and define a cable channel 110 configured to receive the cable 18. The cable channel 110 extends along a cable channel axis 112. Optionally, as in the illustrated embodiment, the cable channel axis 112 may be generally parallel to the cavity axis 82. Alternatively, the cable channel axis 112 may be angled non-parallel to the cavity axis 82. For example, the spring fingers 106 may be angled away from the base ring 104, such as at an approximate 45° angle, an approximate 90° angle or at another angle to dress the cable 18 at such angle relative to the mating end 32 of the backshell 12.
The spring fingers 106 are deflectable and configured to be spring biased against the cable 18 to provide a clamping force against the cable 18. In an exemplary embodiment, the spring fingers 106 are cantilevered such that the distal ends 108 are free from each other. The spring fingers 106 are circumferentially disposed around the cable channel 110. In an exemplary embodiment, the spring fingers 106 are circumferentially disposed entirely around the cable channel 110. Alternatively, the spring fingers 106 may be circumferentially disposed a majority of the way around the cable channel 110 with a receiving opening along one side for side-loading the cable 18 into the cable channel 110 rather than end-loading the cable 18 through the rear 102 of the cable follower 56. The spring fingers 106 provide a uniform clamping force around the cable 18 providing uniform radial clamping pressure on the cable 18. The spring fingers 106 are circumferentially spaced apart by gaps 114 to allow independent movement of the spring fingers 106 relative to each other.
In an exemplary embodiment, the spring fingers 106 are tapered inward to the distal ends 108 to define a generally conical-shaped cable channel 110. For example, the cable channel 110 may have a first diameter 116 at the base ring 104 and the cable channel 110 may have a second diameter 118 less than the first diameter 116 at the distal ends 108. By tapering inward, the spring fingers 106 may be configured to engage the cable 18 at or near the distal ends 108 such that the spring fingers 106 may be spring biased against the cable 18. The spring fingers 106 are spring biased against the cable 18 to provide a clamping force against the cable 18. In an exemplary embodiment, the spring fingers 106 are spring biased against the cable in different radial directions to substantially center the cable 18 in the cable channel 110. For example, by having the spring fingers 106 circumferentially disposed entirely or substantially entirely around the cable channel 110, the cable 18 may be biased in substantially all radial directions to substantially center the cable 18 in the cable channel 110. In the illustrated embodiment, the cable follower 56 includes six spring fingers 106 spaced equidistant apart from each other about the circumference of the cable channel 110, such as at 60° intervals about the circumference of the cable channel 110. Each spring finger 106 has a countering spring finger on the opposite side of the cable channel 110 located 180° apart to provide clamping forces in generally opposite directions. Such opposite clamping forces tend to center the cable 18 within the cable channel 110.
In an exemplary embodiment, the spring fingers 106 include ribs 120 provided at the distal ends 108. The ribs 120 are provided along the exterior surfaces of the spring fingers 106. The spring fingers 106 each include a clamp end 122 at or near the distal ends 108 that are configured to engage the cable 18. The ribs 120 may be provided at or rearward of the clamp end 122. In an exemplary embodiment, a band strap 124 may wrap around the spring fingers 106 at the clamp end 122. The band strap 124 may be tightened to compress the spring fingers 106 inward around the cable 18. The ribs 120 may provide a positive retention for the band strap 124 to insure that the band strap 124 does not slip off the distal ends 108 of the spring fingers 106. In an exemplary embodiment, the spring fingers 106 at the clamp end 122 may be generally flat rather than tapered. For example, the tapered portions of the spring fingers 106 may be forward of the clamp end 122. In an exemplary embodiment, the spring fingers 106 include tabs 126 extending inward from the spring fingers 106 at the clamp end 122. The tabs 126 may engage the cable 18. For example, the tabs 126 may dig into the jacket of the cable 18 to provide resistance against shifting or pull-out of the cable 18 from the cable channel 110. The tabs 126 may be triangular-shaped and include an edge that digs into the cable 18. Other types of securing features may be provided in alternative embodiments.
The cable follower 56 includes the ratchet slots 72 at the front 100. The ratchet slots 72 are provided circumferentially around the exterior of the base ring 104. In an exemplary embodiment, the cable follower 56 includes a retention groove 128 extending circumferentially around the base ring 104. The retention groove 128 receives a lug 130 of the retention feature 76. The lug 130 is configured to rotate about the base ring 104 within the retention groove 128. However, the retention groove 128 fixes the axial position of the retention feature 76 relative to the cable follower 56, which fixes the axial position of the coupling nut 50 relative to the cable follower 56.
In the assembled state, the front 100 of the cable follower 56 is loaded against the coupling nut shoulder 150. The coupling nut 50 is freely rotatable relative to the cavity insert 54 and the cable follower 56. As such, threads 156 of the coupling nut 50 at the front 60 may be threadably coupled to the second connector portion 14. As the coupling nut 50 is threadably coupled to the second connector portion 14, the anti-rotation teeth 94 of the cavity insert 54 may engage the second connector portion 14 to stop or resist rotation of the cavity insert 54 and the cable follower 56 relative to the second connector portion 14.
In an exemplary embodiment, a space 158 is provided between the braid lip 96 and the interior of the base ring 104. The cable braid and/or the cable jacket of the cable 18 may be received in the space 158. A braid strap may be received in the space 158 to mechanically and electrically connect the cable braid to the braid lip 96 of the cavity insert 54. The spring fingers 106 extend rearward of the base ring 104. In an exemplary embodiment, the spring fingers 106 are tapered inward from the base ring 104.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.