Electrical assembly

Information

  • Patent Grant
  • 11975665
  • Patent Number
    11,975,665
  • Date Filed
    Friday, February 7, 2020
    4 years ago
  • Date Issued
    Tuesday, May 7, 2024
    8 months ago
Abstract
An electrical assembly includes a track assembly, a support member configured to move along the track assembly, a first ECU connected to the support member, and a second electronic control unit (ECU) connected to the track assembly and configured to provide power from a power source to the track assembly. The first ECU may be configured to disconnect the electrical load and/or cause the electrical load to operate in a low-current mode if a connection system is partially engaged. The second ECU may have a first mode in which the second ECU provides power in a first voltage range to the track assembly. The second ECU may have a second mode in which the second ECU provides power in a second voltage range. The second ECU may be configured to switch between the first mode and the second mode according to information from the first ECU.
Description
TECHNICAL FIELD

The present disclosure generally relates to electrical assemblies, including electrical assemblies that may be used in connection with tracks, such as vehicle seat tracks.


BACKGROUND

This background description is set forth below for the purpose of providing context only. Therefore, any aspect of this background description, to the extent that it does not otherwise qualify as prior art, is neither expressly nor impliedly admitted as prior art against the instant disclosure.


Some electrical assemblies may not be configured for support assemblies that may be selectively electrically and mechanically connected to track assemblies. Some electrical assemblies may not operate efficiently or effectively.


There is a desire for solutions/options that minimize or eliminate one or more challenges or shortcomings of electrical assemblies. The foregoing discussion is intended only to illustrate examples of the present field and should not be taken as a disavowal of scope.


SUMMARY

In embodiments, an electrical assembly may include a track assembly, a support member configured for connection with the track assembly, an electrical load, an electronic control unit (ECU), and/or a connection system including an electrical contact that may be connected to the support assembly. The electrical contact may be configured for selective electrical connection with said track assembly (e.g., may be connected to and disconnected from said track assembly). The electrical assembly may include a sensor that may be configured to sense a status of the connection system. The ECU may be configured to disconnect the electrical load and/or cause the electrical load to operate in a low-current mode if the status of the connection system is not fully engaged (e.g., is partially engaged or not engaged). The electrical assembly may include an additional ECU that may be connected to said track assembly. The additional ECU may be configured to communicate with at least one of the ECU and the sensor. The additional ECU may be configured to supply a reduced voltage if the status of the connection system is partially engaged. The reduced voltage may be about 5 V or less. The electrical assembly may include one or more additional electrical loads. The electrical load may be a motor and/or one or more additional electrical loads may include a heater.


With embodiments, the ECU may include a high-current mode and/or a low-current mode. The ECU may be configured to switch from the high-current mode to the low-current mode, such as if the status of the connection system is partially engaged. The electrical contact may be configured to rotate about a substantially vertical axis. The support assembly may be configured to be selectively vertically connectable with said track assembly. The support assembly may include a seat. The electrical assembly may include a second electrical contact that may be configured for selective electrical connection with a second track of the track assembly. The electrical assembly may include a first sensor and a second sensor. The electrical contact may be configured for selective electrical connection with a first track of the track assembly. The connection system may not be fully disengaged until both of the electrical contact and the second electrical contact are disconnected from the first track and the second track, respectively. The first sensor may be configured to detect a position of the electrical contact. The second sensor may be configured to detect a position of the second electrical contact.


In embodiments, the first track may include a first inner track, a first outer track, and/or a first conductor disposed at least partially in a wall of the first outer track. The second track may include a second inner track, a second outer track, and/or a second conductor disposed at least partially in a wall of the second outer track. The electrical contact may be configured for selective electrical connection with the first conductor. The second electrical contact may be configured for selective electrical connection with the second conductor. The electrical contact may be configured for selective electrical connection with the second conductor. The second electrical conductor may be configured for selective electrical connection with the first conductor.


With embodiments, an electrical assembly may include a track assembly, a support assembly configured to move along the track assembly, and/or an electronic control unit (ECU) that may be connected to the track assembly. The ECU may be configured to provide power from a power source to the track assembly. The ECU may include a first mode in which the ECU provides power in a first voltage range to the track assembly. The ECU may include a second mode in which the ECU provides power in a second voltage range to the track assembly. The ECU may be configured to switch between the first mode and the second mode according to information regarding the support assembly. The first voltage range may include voltages of at least about 12 V. The first voltage range may include voltages of at least about 36 V. The second voltage range may include voltages of about 8 V or less. The second voltage range includes voltages of about 5 V. The support assembly may include an additional ECU, a support member connected to the track assembly, and/or a seat connected to move with the support member. The support assembly may include a motor connected to move the seat. The additional ECU may be configured to control operation of the motor. The electrical assembly may include a switch connected to the additional ECU and/or may be configured to receive user input. The electrical assembly may include a blocker. The blocker may be configured to restrict disconnection of the support assembly from the track assembly when the ECU is in the first mode. The electrical assembly may include an occupancy sensor that may be connected to the blocker. The blocker may be configured to restrict disconnection of the support assembly from the track assembly when the ECU determines that the support assembly is occupied via the occupancy sensor.


The foregoing and other aspects, features, details, utilities, and/or advantages of embodiments of the present disclosure will be apparent from reading the following description, and from reviewing the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

While the claims are not limited to a specific illustration, an appreciation of various aspects may be gained through a discussion of various examples. The drawings are not necessarily to scale, and certain features may be exaggerated or hidden to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not exhaustive or otherwise limiting, and are not restricted to the precise form and configuration shown in the drawings or disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:



FIG. 1 is a schematic view of an embodiment of an electrical assembly according to teachings of the present disclosure.



FIG. 2 is a side and schematic view of an embodiment of an electrical assembly according to teachings of the present disclosure.



FIGS. 2A, 2B, and 2C are cross-sectional views of embodiments of a contact in engaged, partially engaged, and disengaged positions, respectively, relative to a conductor according to teachings of the present disclosure.



FIG. 3 is a perspective view of embodiments of a conductor and contacts electrical assembly according to teachings of the present disclosure.



FIG. 4 is a graphical representation of communications between a first ECU and a second ECU in an embodiment of an electrical assembly according to teachings of the present disclosure.



FIG. 5 is a graphical representation of electrical current and voltage of embodiments of electrical assemblies according to teachings of the present disclosure.



FIG. 6 is a top view an of an embodiment of an electrical assembly according to teachings of the present disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present disclosure, examples of which are described herein and illustrated in the accompanying drawings. While the present disclosure will be described in conjunction with embodiments and/or examples, it will be understood that they do not limit the present disclosure to these embodiments and/or examples. On the contrary, the present disclosure covers alternatives, modifications, and equivalents.


In embodiments, such as generally illustrated in FIG. 1, an electrical assembly 20 may include a track assembly 30, a support assembly 50, a first electronic control unit (ECU) 70, and/or a second ECU 90. The second ECU 90 may be configured for connection with a power source 22 (e.g., a direct current or DC power source). The second ECU 90 may selectively provide DC power from the power source 22 to the track assembly 30 and/or may control the power (e.g., voltage, current, etc.) provided to the track assembly 30. The second ECU 90 may, for example and without limitation, be a vehicle ECU.


With embodiments, the track assembly 30 may include a first track 32 and/or a second track 34. As generally illustrated in FIG. 2, the first track 32 may include an inner track 32A and/or an outer track 32B. The second track 34 may include an inner track 34A and/or an outer track 34B. The inner tracks 32A, 34A may, for example and without limitation, include steel profiles and/or may be disposed at least partially within the outer tracks 32B, 34B. The outer tracks 32B, 34B may, for example and without limitation, include aluminum and/or be about 40 mm tall. The track assembly 30 may include one or more conductors/bus bars (e.g., electrical conductors). For example, the first track 32 may include a first conductor 36A and/or a second conductor 36B. The second track 34 may include a first conductor 38A and/or a second conductor 38B. The first conductors 36A, 38A and/or the second conductors 36B, 38B may be connected to the outer tracks 32B, 34B and/or may be disposed at least partially in a wall 40, 42 of the outer tracks 32B, 34B.


In embodiments, a support assembly 50 may be configured for selective connection with the track assembly 30, such as via a connection system 60. The support assembly 50 may include a support member 52 that may be inserted at least partially into the track assembly 30 and may be configured to move or slide along the track assembly 30 (e.g., in the X-direction). The support assembly 50 may include the first ECU 70 (e.g., a seat ECU), a support member 52, and/or a seat 54 (e.g., a vehicle seat). The seat 54 may be connected to the support member 52 and/or may move with the support member 52 along the track assembly 30. While embodiments are described herein in connection with a seat 54, the support assembly 50 may include one or more other components that may be connected to and/or supported by the support member 52 in addition to or instead of a seat 54 (e.g., consoles, cargo, racks, etc.).


With embodiments, a connection system 60 may include one or more contacts 62A, 62B, 64A, 64B (e.g., electrical contacts) that may be configured for selective electrical connection with the conductors 36A, 36B, 38A, 38B of the track assembly 30. For example and without limitation, the contacts 62A, 62B, 64A, 64B may rotate into and out of operative/electrical contact with the conductors 36A, 36B, 38A, 38B (e.g., about an axis that may be substantially aligned/parallel with the Z-direction). The contacts 62A, 62B, 64A, 64B may provide an electrical connection between the track assembly 30 and the support member 52 (e.g., seat 54). Non-limiting examples of conductors 36A, 36B, 38A, 38B and contacts 62A, 62B, 64A, 64B are generally illustrated in FIGS. 2, 2A, 2B, 2C, and 3. The contacts 62A, 62B, 64A, 64B may for example and without limitation, include a straight and/or narrow blade configuration (see, e.g., FIG. 2), an arced or fan-like shape (see, e.g., FIGS. 2A-2C), and/or a rectangular configuration (see, e.g., FIG. 3).


With embodiments, the contacts 62A, 62B, 64A, 64B may be included in the connection system 60 that may be engaged to connect the support assembly 50 with the track assembly 30 and/or to move the support assembly 50, manually or automatically (e.g., via a motor 68), along the track assembly 30. For example and without limitation, removal of the support assembly 50 from the track assembly 30 may involve movement (e.g., rotation) of the contacts 62A, 62B, 64A, 64B such that the contacts 62A, 62B, 64A, 64B do not substantially restrict Z-direction movement of the support assembly 50.


In embodiments, the support assembly 50 may include one or more systems/functions that may use electrical power and/or that may be provided via one or more electrical loads/components. For example and without limitation, the seat 54 may be configured for powered movement, such as longitudinal movement, vertical movement, angular movement/titling, and/or rotational movement. Such movement may be conducted via one or more electric motors 68 that may be connected to and/or incorporated with the seat 54 and/or support member 52. Additionally or alternatively, the seat 54 may include other systems/functions, such as, for example and without limitation, heating (e.g., via an electric heater 72), massage/haptic alerts (e.g., via electronic haptic devices 74), cooling/venting (e.g., via an electric fan 76), among others. The first ECU 70 may be configured to control some or all of the systems of the support assembly 50. A user interface (UI) 78 may be connected to the first ECU 70 (e.g., directly and/or via the second ECU 90), such as to receive input from a user regarding one or more of the functions of the seat 54. The user interface 78 may include, for example and without limitation, one or more switches or buttons (e.g., physical and/or virtual switches/buttons) that may receive input from a user regarding movement, heating, massaging, and/or cooling of the seat 54. Upon receiving an input from the user interface 78, the first ECU 70 may be configured to activate the requested system/function.


With embodiments, one or more of the systems/functions of the seat 54 may use electrical power in a first/high range (e.g., may be high-power systems/functions). The first range may, for example and without limitation, include voltages of at least about 10 V, at least about 12 V, about 24 V, about 36 V, about 48 V, or higher or lower voltages, or voltages therebetween. When activated, such systems may obtain power from the power source 22 via the conductors 36A, 36B, 38A, 38B of the track assembly 30 and the contacts 62A, 62B, 64A, 64B of the support member 52.


In embodiments, the support assembly 50 may be configured to be connected to and/or disconnected/removed from the track assembly 30 in a plurality of locations. Disconnecting the support member 52 from the track assembly 30 may include disconnecting the contacts 62A, 62B, 64A, 64B of the support member 52 from the conductors 36A, 36B, 38A, 38B of the track assembly 30, which may involve metal components being separated from each other. If the voltage being provided to the support assembly 50 via the conductors 36A, 36B, 38A, 38B and contacts 62A, 62B, 64A, 64B and/or the current drawn by the support assembly 50 is above a threshold when the support assembly 50 is disconnected, a spark/arc may be generated between the conductors 36A, 36B, 38A, 38B and the contacts 62A, 62B, 64A, 64B as the contacts 62A, 62B, 64A, 64B move away from the conductors 36A, 36B, 38A, 38B. Such a spark/arc could harm or otherwise damage the conductors 36A, 36B, 38A, 38B, the contacts 62A, 62B, 64A, 64B, and/or one or more other components. Additionally or alternatively, a spark could interfere with the operation of one or more safety devices 80, such as airbags.


With embodiments, such as generally illustrated in FIGS. 2, 2A, 2B, and 2C, the support assembly 50 may include one or more sensors 82, 84 that may be configured to sense a status of the contacts 62A, 62B, 64A, 64B and/or the connection system 60. For example and without limitation, the support assembly 50 may include a sensor 82, 84 for each contact 62A, 62B, 64A, 64B and/or for each set of inner tracks 32A, 34A and outer tracks 32B, 34B. The sensors 82, 84 may be configured to detect/determine a rotational position of the contacts 62A, 62B, 64A, 64B. For example and without limitation, a rotational position of the contacts 62A, 62B, 64A, 64B may correspond to a connection status between the contacts 62A, 62B, 64A, 64B and the conductors 36A, 36B, 38A, 38B. The sensors 82, 84 may be configured to sense if the contacts 62A, 62B, 64A, 64B are in a first position (see, e.g., FIG. 2A), a second position (see, e.g., FIG. 2B), and/or a third position (see, e.g., FIG. 2C). In the first position, the contacts 62A, 62B, 64A, 64B may be connected with the conductors 36A, 36B, 38A, 38B of the track assembly 30 (e.g., sufficiently connected such that a spark/arc is not expected—see, e.g., FIG. 2A). When the contacts 62A, 62B, 64A, 64B are in the first position, the contacts 62A, 62B, 64A, 64B may be disposed substantially perpendicular to the track assembly 30. The first position and the third position may, for example, be about 90 degrees apart. The second position may, for example and without limitation, be about 15 degrees to about 65 degrees from the first position. The system 60 may not be in the third position (e.g., fully disengaged) until all contacts 62A, 62B, 64A, 64B are disconnected from corresponding conductors 36A, 36B, 38A, 38B.


In embodiments, when the contacts 62A, 62B, 64A, 64B are in a second position, the contacts 62A, 62B, 64A, 64B may be moving into and/or or out of connection with the conductors 36A, 36B, 38A, 38B (e.g., may be partially engaged—see, e.g., FIG. 2B). The second position may include any rotational position of the contacts 62A, 62B, 64A, 64B such that at least a portion of the contacts 62A, 62B, 64A, 64B is vertically aligned with a portion of the track assembly 30 and at least a portion of the contacts 62A, 62B, 64A, 64B is not vertically aligned with a portion of the track assembly 30. When the contacts 62A, 62B, 64A, 64B are in the third position (see, e.g., FIG. 2C), the contacts 62A, 62B, 64A, 64B may not be connected to the conductors 36A, 36B, 38A, 38B and/or may be disposed substantially parallel to the track assembly 30. In the third position, the contacts 62A, 62B, 64A, 64B may not be vertically aligned with the track assembly 30, and/or the support assembly 50 may be removed from (or inserted into) the track assembly 30. If the contacts 62A, 62B, 64A, 64B are not connected (e.g., electrically and/or mechanically) to the conductors 36A, 36B, 38A, 38B, such as in the third position, the connection system 60 may not be fully engaged. If the contacts 62A, 62B, 64A, 64B are partially engaged/connected with the conductors 36A, 36B, 38A, 38B, such as in the second position, lower power may be provided to the support assembly 50 and/or the first ECU 70 may continue to be powered.


In embodiments, the first ECU 70 may be connected to the one or more sensors 82, 84 and may control one or more electrical loads of the support assembly 50 according to (e.g., using, utilizing, based on, etc.) information from the one or more sensors 82, 84. For example and without limitation, the first ECU 70 may be configured to switch the support assembly 50 to (or maintain the support assembly 50 in) a low power mode, which may include at least temporarily disconnecting one or more electrical loads (e.g., via one or more switches 86) and/or causing one or more electrical loads to operate in a low-current mode if the connection system 60 is not fully/sufficiently engaged (e.g., at least one of the contacts 62A, 62B, 64A, 64B is in a second position). For example, if a user starts to disconnect a support assembly 50 (e.g., a seat 54) from the track assembly 30, the contacts 62A, 62B, 64A, 64B may rotate out of connection with the conductors 36A, 36B, 38A, 38B (e.g., out of the first position), the sensors 82, 84 may sense that the contacts 62A, 62B, 64A, 64B are about to move or have moved (e.g., started to move) out of a connected position, and/or the first ECU 70 may switch the support assembly 50 to the low power mode. Additionally or alternatively, the sensors 82, 84 may facilitate detection of a malfunction of the contacts 62A, 62B, 64A, 64B. For example and without limitation, if the support assembly 50 is connected with the track assembly 30 and a user is not attempting to remove the support assembly 50, but the connection system 60 is not fully engaged (e.g., contacts 62A, 62B, 64A, 64B are not in the first position or are only partially connected/engaged with the track assembly 30 and/or the conductors 36A, 36B, 38A, 38B), the first ECU 70 may detect a malfunction/error. If the first ECU 70 detects an error, the first ECU 70 may switch the support assembly 50 to a low power mode and/or may provide an indication to a user that an error has occurred, such as via the user interface 78.


In embodiments, the first ECU 70 may include a high-current mode and a low-current mode. The high-current mode may be a normal or fully functional mode in which the first ECU 70 draws a higher level of current (compared to the low-current mode). The low-current mode may be a reduced operation mode in which the first ECU 70 may perform some functions, but may not perform all functions, and may draw a lower level of current compared to the high-current mode. The first ECU 70 may be configured to switch from the high-current mode to the low-current mode if the status of the connection system 60 is not fully engaged (e.g., if the contacts 62A, 62B, 64A, 64B are in the second position).


With embodiments, the second ECU 90 may have a first mode in which the second ECU 90 is configured to provide power in the first range and/or may include a second mode in which the second ECU 90 is configured to provide power in a second range that may be lower than the first range. The second range may, for example and without limitation, include voltages of about 8 V or less, about 6 V, about 5 V, about 5 V to about 6 V, or higher or lower voltages or voltages therebetween. The second range may be sufficient for the first ECU 70 to operate, and/or for one or more lower power seat systems to operate. For example and without limitation, a diagnostics system 92, an occupancy system/sensor 94, and/or a seat positioning system 96 may be configured to operate with the second range. Other systems/functions may not be configured to operate in the second range (e.g., motors 68, heaters 72, haptic devices 74, etc.). A spark may not be expected to be generated if the contacts 62A, 62B, 64A, 64B are disconnected from the conductors 36A, 36B, 38A, 38B while power is provided in the second range and/or if the first ECU 70 has switched the support assembly 50 to a low power mode.


In embodiments, such as generally illustrated in FIG. 4, the second ECU 90 may operate in the first mode and provide power in the first range when use of a high-power system is requested by a user or is currently being used, and the second ECU 90 may operate in the second mode and provide power in the second range when use of seat systems is not requested or seat systems are no longer being used. As generally illustrated, the second ECU 90 may initially provide power in the second/low range (e.g., the second mode may be the default mode). As the support member 52 and/or the seat 54 is connected to (or “dropped” vertically into) the track assembly 30, the second ECU 90 may continue to operate in the second mode. If a user wants to use one of the high-power seat systems/functions, the user may provide input via the user interface 78 and the first ECU 70 may send a request (or some form of indication) to the second ECU 90 to switch to the first/high mode. The second ECU 90 may receive the request from the first ECU 70, switch to the first/high mode, and provide power in the first range to the track assembly 30. The second ECU 90 may send an acknowledgement message (or some form of indication) to the first ECU 70 when the second ECU 90 has switched to the first/high mode. The first ECU 70 may be configured to activate the requested system when the first ECU 70 receives the acknowledgement message and/or determines that power in the first range is being provided to the track assembly 30. For example and without limitation, once the second ECU 90 has switched to the first mode, the first ECU 70 may actuate one or more seat motors 68 to move the support assembly 50 (e.g., seat 54) along the track assembly 30. If the second ECU 90 is not in the first mode, the first ECU 70 may not actuate the requested system (e.g., the requested system(s) may not operate in the second range).


With embodiments, the second ECU 90 may be connected to the sensors 82, 84 of the support assembly 50, such as directly and/or via the first ECU 70. The second ECU 90 may switch to (or remain in) the second mode if the second ECU 90 determines via the sensors 82, 84 that the connection system 60 is not fully engaged.


With embodiments, while a high-power system is active, the first ECU 70 may provide indications of the status of the system (e.g., that the system is still active) to the second ECU 90. The second ECU 90 may receive the indications and may remain in the first mode as long as the system is still active. When the system is no longer active (e.g., the user inputs a request to stop the system or the system times out), the first ECU 70 may send a second request/message to the second ECU 90 to switch to the second mode. The second ECU 90 may switch back to the second mode upon receiving the second request/message. There may be a delay between the first ECU 70 transmitting a request and the second ECU 90 switching modes (see, e.g., FIG. 4). If the second ECU 90 fails to receive a status indication for a period of time, the second ECU 90 may automatically switch back to the second mode and/or may request a status indication from the first ECU 70.


In embodiments, electrical loads of the support assembly 50 may include passive loads and/or active/smart loads. The first ECU 70 may be configured to operate the one or more active/smart loads in a low current mode to reduce the risk of sparking/arcing. The second ECU 90 may be configured to operate in the second mode to provide a lower voltage to the support assembly 50 (e.g., for the passive loads), which may reduce the risk of sparking/arcing. The first ECU 70 may be configured to operate the support assembly 50 in a low power mode and the second ECU 90 may be configured to operate in the second mode at the same time (e.g., the ECUs 70, 90 may operate the electrical assembly in a low-current and low-voltage mode), which may minimize the risk of sparking/arcing.


In embodiments, the first ECU 70 and the second ECU 90 may cooperate to maintain the voltage and current of the support assembly 50 below threshold values if the support assembly 50 is being removed (e.g., longitudinally) and/or if the connection system 60 is not fully engaged, such as generally illustrated in FIG. 5. A first current/voltage threshold A1 may correspond to a region where arcing does not occur or is unlikely to occur when disconnecting the support assembly 50 from the track assembly 30. A second current/voltage threshold A2 may correspond to a region where arcing is possible; for example and without limitation, short arcing may be possible when disconnecting the support assembly 50 from the track assembly 30. A third current/voltage threshold A3 may correspond to a region where arcing is expected; for example and without limitation, full arcs may be likely when removing the support assembly 50 from the track assembly 30. For example and without limitation, if the support assembly 50 is being removed and/or the connection system 60 is not fully engaged and the current draw of the support assembly 50, which may be controlled at least in part via the first ECU 70, is relatively low (e.g., less than 0.5 A), the second ECU 90 may provide a relatively high voltage. Additionally or alternatively, if the support assembly 50 is being removed and/or the connecting system 60 is not fully engaged and the current draw of the support assembly 50 is relatively high (e.g., about 1 A or more), the second ECU 90 may provide a relatively low voltage to the support assembly 50 (e.g., may operate in the second mode).


In embodiments, the second ECU 90 and the first ECU 70 may be configured to communicate with each other. For example and without limitation, the first ECU 70 may include a first communication device 100 and/or the second ECU 90 may include a second communication device 102. The first communication device 100 and/or the second communication device 102 may be configured to communicate via wireless and/or wired methods, such as, for example and without limitation, power line communication (PLC), controller area network (CAN), and/or frequency multiplexing, among others.


With embodiments, the support assembly 50 may include an actuator 110 configured for removing the seat and the support member from the track assembly (see, e.g., FIG. 2). The actuator 110 may, for example and without limitation, include a strap or a lever. The actuator 110 may be configured to unlock one or more locking members 120, 122 that may limit movement of the support member 52 in at least one direction. A sensor 112 may be connected to the actuator 110 to sense when a user contacts and/or actuates the actuator 110 (e.g., when a user attempts to remove the support assembly 50 from the track assembly 30). The first ECU 70 and/or the second ECU 90 may be connected to the sensor 112. If contact/actuation by a user is sensed, the first ECU 70 may stop any high-power systems of the support member 52 (e.g., motors, heaters, etc.) that may be active, may switch the support assembly 50 to the low-current mode, and/or may send a request to the second ECU 90 to switch to the second mode. The sensor 112 may, for example and without limitation, include a capacitive sensor 114. In embodiments, an indicator 116 may be connected to and/or proximate the actuator 110, the support member 52, and/or the seat 54 and may provide an indication (e.g., visual and/or audible) of whether the actuator 110 can/should be actuated. The first ECU 70 may control the indicator 116. For example and without limitation, the indicator 116 may include a light emitting diode (LED). The first ECU 70 may cause the LED (e.g., the indicator 116) to emit a first color of light (e.g., red) if the second ECU 90 is in the first mode, and/or the first ECU 70 may cause the LED (e.g., the indicator 116) to emit a second color of light (e.g., green) if the second ECU 90 is in the second mode.


In embodiments, a blocker 118 may be connected to the support assembly 50 and may restrict/prevent disconnection of the support assembly 50 from the track assembly 30 while the second ECU 90 is in the first mode and while the support assembly 50 is in a high-current mode. The blocker 118 may selectively engage (e.g., mechanically) the track assembly 30 and/or may engage the actuator 110 to limit/prevent actuation of the actuator 110. The first ECU 70 may control operation of the blocker 118. For example and without limitation, if the second ECU 90 is in the first mode and/or the support assembly 50 is in a high-current mode, the first ECU 70 may operate (or maintain) the blocker 118 in a blocking state. If the second ECU 90 is in the second mode and/or the support assembly 50 is in a lower-current mode, the first ECU 70 may operate the blocker 118 in an unblocked state. With embodiments, the support assembly 50 may include an occupancy sensor 94 that may be connected to the first ECU 70. If the occupancy sensor 94 senses whether a seat 54 is occupied, the first ECU 70 may operate (or maintain) the blocker 118 in a blocking state to prevent disconnection/removal of the occupied seat 54. The blocker 118 may include one or more of a variety of configurations. For example and without limitation, the blocker 118 may include a solenoid, a lever, a cam, and/or other configurations.


With embodiments, the blocker 118 may be active/engaged while the second ECU 90 is in the first mode, and may be deactivated/disengaged once the second ECU 90 is in the second mode, such as after a sudden stop of high power usage by the support assembly 50 and/or after movement of the support assembly 50 is completed. In some circumstances, movement of the support assembly 50 may need to stop before the blocker 118 is engaged. Additionally or alternatively, a request for low power from one support assembly 50 may stop movement of another support assembly 50.


In embodiments, a sensor 82, 84 may, for example, be configured as a normally-open switch. Disengaging the contacts 62A, 62B, 64A, 64B may include closing the switch, which may reduce power consumption.


With embodiments, the contacts 62A, 62B, 64A, 64B may translate (e.g., extend/retract in the Y-direction and/or Z-direction) into and/or out of engagement with the conductors 36A, 36B, 38A, 38B, such as instead of or in addition to rotating about a vertical axis. A sensor 82, 84 may be configured as an additional contact that may be shorter than the contacts 62A, 62B, 64A, 64B, such that the sensor 82, 84 disengages from the conductors 36A, 36B, 38A, 38B before the contacts 62A, 62B, 64A, 64B (e.g., a sensor signal may have relatively low current so there may be practically no risk of arcing). Additionally or alternatively, the contacts 62A, 62B, 64A, 64B may tilt (e.g., rotate about a longitudinal axis) into and/or out of engagement with the conductors 36A, 36B, 38A, 38B.


In embodiments, a second position of the contacts 62A, 62B, 64A, 64B may disengage a sensor 82, 84, but may not disengage the contacts 62A, 62B, 64A, 64B from the conductors 36A, 36B, 38A, 38B. For example and without limitation, the contacts 62A, 62B, 64A, 64B may be in the same place in the first and second positions, but, in the second position, the contacts 62A, 62B, 64A, 64B may be permitted to move to the third position (e.g., the contacts 62A, 62B, 64A, 64B may be unlocked, and/or the second position may function as a “ready to disengage” state of the contacts 62A, 62B, 64A, 64B).


With embodiments, such as generally illustrated in FIG. 6, an electrical assembly 20 may include more than one support assembly 50 that may be connected to the track assembly 30 (e.g., more than one seat 54 may be connected to the same track assembly 30). For example and without limitation, a second support assembly 50′, a third support assembly 50″, and/or a fourth support assembly 50′″ may be connected to the track assembly 30. Some or all of the support assemblies 50, 50′, 50″, 50′″ may include a corresponding first ECU 70, 70′, 70″, 70′″. The electrical assembly 20 may include a second track assembly 30′ that may be configured substantially the same as the track assembly 30. The second ECU 90 may provide substantially the same power to any support assembly 50, 50′, 50″, 50′″ connected to a track assembly 30, 30′. If a first support assembly 50 is operating a high-power system (e.g., energizing motors 68 to move a seat 54) and a user attempts to remove a second support assembly 50′ from the track assembly 30, a blocker 118 may initially prevent removal of the second support assembly 50′ the first ECU 70′ of the second support assembly 50′ may send a request to the second ECU 90 to shift to the second mode, the second ECU 90 and/or the first ECU 70′ of the second support assembly 50′ may send a message to the first ECU 70 of the first support assembly 50 to stop the high-power system, the first ECU 70 of the first support assembly 50 may stop the high power system, the blocker 118 may be disengaged once the second ECU 90 of the first support assembly 50 is in the second mode, and/or then the user may be permitted to remove the second support assembly 50′ from the track assembly 30. Additionally or alternatively, a blocker 118 may prevent removal of the second support assembly 50′ until the use of the high-power system of the first support assembly 50 is complete.


In embodiments, an ECU (e.g., the first ECU 70 and/or the second ECU 90) may include an electronic controller and/or include an electronic processor, such as a programmable microprocessor and/or microcontroller. In embodiments, an ECU may include, for example, an application specific integrated circuit (ASIC). An ECU may include a central processing unit (CPU), a memory (e.g., a non-transitory computer-readable storage medium), and/or an input/output (I/O) interface. An ECU may be configured to perform various functions, including those described in greater detail herein, with appropriate programming instructions and/or code embodied in software, hardware, and/or other medium. In embodiments, an ECU may include a plurality of controllers. In embodiments, an ECU may be connected to a display, such as a touchscreen display.


Various examples/embodiments are described herein for various apparatuses, systems, and/or methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the examples/embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the examples/embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the examples/embodiments described in the specification. Those of ordinary skill in the art will understand that the examples/embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments.


Reference throughout the specification to “examples”, “in examples,” “with examples,” “various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, means that a particular feature, structure, or characteristic described in connection with the example/embodiment is included in at least one embodiment. Thus, appearances of the phrases “examples”, “in examples,” “with examples,” “in various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more examples/embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment/example may be combined, in whole or in part, with the features, structures, functions, and/or characteristics of one or more other embodiments/examples without limitation given that such combination is not illogical or non-functional. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the scope thereof.


It should be understood that references to a single element are not necessarily so limited and may include one or more of such element. Any directional references (e.g., plus, minus, upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of examples/embodiments.


Joinder references (e.g., attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily imply that two elements are directly connected/coupled and in fixed relation to each other. The use of “e.g.” in the specification is to be construed broadly and is used to provide non-limiting examples of embodiments of the disclosure, and the disclosure is not limited to such examples. Uses of “and” and “or” are to be construed broadly (e.g., to be treated as “and/or”). For example and without limitation, uses of “and” do not necessarily require all elements or features listed, and uses of “or” are inclusive unless such a construction would be illogical.


While processes, systems, and methods may be described herein in connection with one or more steps in a particular sequence, it should be understood that such methods may be practiced with the steps in a different order, with certain steps performed simultaneously, with additional steps, and/or with certain described steps omitted.


All matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the present disclosure.


It should be understood that an electronic control unit (ECU), a system, and/or a processor as described herein may include a conventional processing apparatus known in the art, which may be capable of executing preprogrammed instructions stored in an associated memory, all performing in accordance with the functionality described herein. To the extent that the methods described herein are embodied in software, the resulting software can be stored in an associated memory and can also constitute means for performing such methods. Such a system or processor may further be of the type having ROM, RAM, RAM and ROM, and/or a combination of non-volatile and volatile memory so that any software may be stored and yet allow storage and processing of dynamically produced data and/or signals.


It should be further understood that an article of manufacture in accordance with this disclosure may include a non-transitory computer-readable storage medium having a computer program encoded thereon for implementing logic and other functionality described herein. The computer program may include code to perform one or more of the methods disclosed herein. Such embodiments may be configured to execute via one or more processors, such as multiple processors that are integrated into a single system or are distributed over and connected together through a communications network, and the communications network may be wired and/or wireless. Code for implementing one or more of the features described in connection with one or more embodiments may, when executed by a processor, cause a plurality of transistors to change from a first state to a second state. A specific pattern of change (e.g., which transistors change state and which transistors do not), may be dictated, at least partially, by the logic and/or code.

Claims
  • 1. An electrical assembly, comprising: a support assembly configured for selective connection with a track assembly;a connection system including an electrical contact connected to the support assembly, the electrical contact configured for selective electrical connection with said track assembly;an electrical load connected to the support assembly;a sensor configured to sense a status of the connection system, including whether the connection system is fully engaged, partially engaged, or not engaged; andan electronic control unit (ECU) configured to communicate with the sensor and the support assembly;wherein the ECU is configured to disconnect the electrical load and/or cause the electrical load to operate in a low-current mode if the status of the connection system is partially engaged.
  • 2. The electrical assembly of claim 1, including an additional ECU connected to said track assembly; wherein the additional ECU is configured to communicate with at least one of the ECU and the sensor; andthe additional ECU is configured to supply a reduced voltage if the status of the connection system is partially engaged.
  • 3. The electrical assembly of claim 2, wherein the reduced voltage is about 5 V or less; and the ECU is connected to move with the support assembly.
  • 4. The electrical assembly of claim 1, including one or more additional electrical loads; wherein the electrical load is a motor and at least one of the one or more additional electrical loads includes a heater.
  • 5. The electrical assembly of claim 1, wherein the ECU includes an ECU high-current mode and an ECU low-current mode; andthe ECU is configured to switch from the ECU high-current mode to the ECU low-current mode if the status of the connection system is partially engaged.
  • 6. The electrical assembly of claim 1, wherein the electrical contact is configured to rotate about a vertical axis.
  • 7. The electrical assembly of claim 1, wherein the electrical contact includes a fully engaged position in which the electrical contact is in contact with a conductor of said track assembly; and the electrical contact includes a disengaged position in which the electrical contact is not in contact with said conductor.
  • 8. The electrical assembly of claim 7, wherein the electrical contact is configured to rotate to the disengaged position such that the electrical contact does not restrict removal of the support assembly from said track assembly.
  • 9. The electrical assembly of claim 1, including: a second electrical contact configured for selective electrical connection with a second track of the track assembly; anda second sensor;wherein the electrical contact is configured for selective electrical connection with a first track of the track assembly;the connection system is not fully disengaged until either of the electrical contact and the second electrical contact are disconnected from the first track and the second track, respectively;the sensor is configured to detect a position of the electrical contact; andthe second sensor is configured to detect a position of the second electrical contact.
  • 10. The electrical assembly of claim 9, wherein the first track includes a first inner track, a first outer track, and a first conductor disposed at least partially in a wall of the first outer track;the second track includes a second inner track, a second outer track, and a second conductor disposed at least partially in a wall of the second outer track;the electrical contact is configured for selective electrical connection with the first conductor; andthe second electrical contact is configured for selective electrical connection with the second conductor.
  • 11. The electrical assembly of claim 10, wherein the electrical contact is configured for selective electrical connection with the second conductor; andthe second electrical contact is configured for selective electrical connection with the first conductor.
  • 12. An electrical assembly, comprising: a track assembly;a support assembly configured for selective connection with the track assembly;an electronic control unit (ECU) connected to the track assembly and configured to provide power from a power source to the track assembly; andwherein the ECU has a first mode in which the ECU provides power in a first voltage range to the track assembly;the ECU has a second mode in which the ECU provides power in a second voltage range to the track assembly;the ECU is configured to switch between the first mode and the second mode according to information regarding the support assembly; andwherein the ECU is configured to switch between the first mode and the second mode according to the information regarding the support assembly to reduce a risk of sparking.
  • 13. The electrical assembly of claim 12, wherein the first voltage range includes voltages of at least about 12 V.
  • 14. The electrical assembly of claim 13, wherein the second voltage range includes voltages of about 8 V or less.
  • 15. The electrical assembly of claim 13, wherein the second voltage range includes voltages of about 5 V.
  • 16. The electrical assembly of claim 12, wherein the first voltage range includes voltages of at least about 36 V.
  • 17. The electrical assembly of claim 12, including a blocker; wherein the ECU is configured to control the blocker to restrict disconnection of the support assembly from the track assembly when the ECU is in the first mode.
  • 18. The electrical assembly of claim 17, including an occupancy sensor connected to the blocker; wherein the blocker is configured to restrict disconnection of the support assembly from the track assembly when the ECU determines that the support assembly is occupied via the occupancy sensor.
  • 19. An electrical assembly, comprising: a track assembly;a support assembly configured for selective connection with the track assembly;an electronic control unit (ECU) connected to the track assembly and configured to provide power from a power source to the track assembly; andwherein the ECU has a first mode in which the ECU provides power in a first voltage range to the track assembly;the ECU has a second mode in which the ECU provides power in a second voltage range to the track assembly;the ECU is configured to switch between the first mode and the second mode according to information regarding the support assembly;wherein the support assembly includes an additional ECU, a support member connected to the track assembly, and a seat connected to move with the support member; andthe electrical assembly further includes a switch connected to the additional ECU and configured to receive user input.
  • 20. The electrical assembly of claim 19, wherein the ECU is configured to switch between the first mode and the second mode according to the information regarding the support assembly to reduce a risk of sparking.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/807,827, filed on Feb. 20, 2019, the disclosure of which is hereby incorporated by reference in its entirety as though fully set forth herein.

US Referenced Citations (239)
Number Name Date Kind
2126143 McGregor Aug 1938 A
2263554 Brach Nov 1941 A
2480622 Warnock Aug 1949 A
2678082 Nathan May 1954 A
3181102 Fehr Apr 1965 A
3213403 Hermann Oct 1965 A
3268848 Adams Aug 1966 A
3603918 Woertz Sep 1971 A
3933403 Rubesamen et al. Jan 1976 A
3940182 Tamura Feb 1976 A
4020769 Keir May 1977 A
4198025 Lowe et al. Apr 1980 A
4243248 Scholz et al. Jan 1981 A
4282631 Uehara et al. Aug 1981 A
4511187 Rees Apr 1985 A
4575295 Rebentisch Mar 1986 A
4618808 Ish-Shalom et al. Oct 1986 A
4707030 Harding Nov 1987 A
4711589 Goodbred Dec 1987 A
4763360 Daniels et al. Aug 1988 A
4776809 Hall Oct 1988 A
4830531 Condit et al. May 1989 A
4853555 Wheat Aug 1989 A
4961559 Raymor Oct 1990 A
4969621 Munchow et al. Nov 1990 A
4987316 White et al. Jan 1991 A
5137331 Colozza Aug 1992 A
5167393 Hayakawa et al. Dec 1992 A
5192045 Yamada et al. Mar 1993 A
5222814 Boelryk Jun 1993 A
5322982 Leger et al. Jun 1994 A
5332290 Borlinghaus et al. Jul 1994 A
5344331 Hoffman et al. Sep 1994 A
5348373 Stiennon Sep 1994 A
5362241 Matsuoka et al. Nov 1994 A
5446442 Swart et al. Aug 1995 A
5466892 Howard et al. Nov 1995 A
5489173 Hofle Feb 1996 A
5582381 Graf et al. Dec 1996 A
5599086 Dutta Feb 1997 A
5618192 Drury Apr 1997 A
5655816 Magnuson et al. Aug 1997 A
5676341 Tarusawa et al. Oct 1997 A
5696409 Handman et al. Dec 1997 A
5701037 Weber et al. Dec 1997 A
5796177 Werbelow et al. Aug 1998 A
5800015 Tsuchiya et al. Sep 1998 A
5899532 Paisley et al. May 1999 A
5918847 Couasnon Jul 1999 A
5921606 Moradell et al. Jul 1999 A
5964442 Wingblad et al. Oct 1999 A
5964815 Wallace et al. Oct 1999 A
6036157 Baroin et al. Mar 2000 A
6142718 Kroll Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6166451 Pigott Dec 2000 A
6216995 Koester Apr 2001 B1
6227595 Hamelin et al. May 2001 B1
6290516 Gerber Sep 2001 B1
6296498 Ross Oct 2001 B1
6299230 Dettl Oct 2001 B1
6318802 Sjostrom et al. Nov 2001 B1
6325645 Schuite Dec 2001 B1
6357814 Boisset et al. Mar 2002 B1
6400259 Bourcart et al. Jun 2002 B1
6405988 Taylor et al. Jun 2002 B1
6422596 Fendt et al. Jul 2002 B1
6439531 Severini et al. Aug 2002 B1
6480144 Miller et al. Nov 2002 B1
6693368 Schumann et al. Feb 2004 B2
6710470 Bauer et al. Mar 2004 B2
6719350 Duchateau et al. Apr 2004 B2
6736458 Chabanne et al. May 2004 B2
6772056 Mattes et al. Aug 2004 B2
6805375 Enders et al. Oct 2004 B2
6851708 Kazmierczak Feb 2005 B2
6882162 Schirmer et al. Apr 2005 B2
6960993 Mattes et al. Nov 2005 B2
7042342 Luo et al. May 2006 B2
7083437 Mackness Aug 2006 B2
7086874 Mitchell et al. Aug 2006 B2
7113541 Lys et al. Sep 2006 B1
7159899 Nitschke et al. Jan 2007 B2
7170192 Kazmierczak Jan 2007 B2
7188805 Henley et al. Mar 2007 B2
7207541 Frohnhaus et al. Apr 2007 B2
7271501 Dukart et al. Sep 2007 B2
7288009 Lawrence et al. Oct 2007 B2
7293831 Greene Nov 2007 B2
7300091 Nihonmatsu et al. Nov 2007 B2
7322605 Ventura et al. Jan 2008 B2
7348687 Aichriedler et al. Mar 2008 B2
7363194 Schlick et al. Apr 2008 B2
7370831 Laib et al. May 2008 B2
7388466 Ghabra et al. Jun 2008 B2
7389960 Mitchell et al. Jun 2008 B2
7416042 Czaykowska et al. Aug 2008 B2
7434883 Deptolla Oct 2008 B2
7454170 Goossens et al. Nov 2008 B2
7455535 Insalaco et al. Nov 2008 B2
7503522 Henley et al. Mar 2009 B2
7505754 Kazmierczak et al. Mar 2009 B2
7523913 Mizuno et al. Apr 2009 B2
7556233 Gryp et al. Jul 2009 B2
7560827 Jacas-Miret et al. Jul 2009 B2
7633301 Steenwyk et al. Dec 2009 B2
7661637 Mejuhas et al. Feb 2010 B2
7665939 Cardona Feb 2010 B1
7739820 Frank Jun 2010 B2
7744386 Speidel et al. Jun 2010 B1
7980525 Kostin Jul 2011 B2
7980798 Kuehn et al. Jul 2011 B1
8010255 Darraba Aug 2011 B2
8146991 Stanz et al. Apr 2012 B2
8278840 Logiudice et al. Oct 2012 B2
8282326 Krostue et al. Oct 2012 B2
8376675 Schulze et al. Feb 2013 B2
8463501 Jousse Jun 2013 B2
8536928 Gagne et al. Sep 2013 B1
8648613 Ewerhart et al. Feb 2014 B2
8702170 Abraham et al. Apr 2014 B2
8757720 Hurst, III et al. Jun 2014 B2
8800949 Schebaum et al. Aug 2014 B2
8857778 Nonomiya Oct 2014 B2
8936526 Boutouil et al. Jan 2015 B2
8967719 Ngiau et al. Mar 2015 B2
RE45456 Sinclair et al. Apr 2015 E
9010712 Gray et al. Apr 2015 B2
9018869 Yuasa et al. Apr 2015 B2
9045061 Kostin et al. Jun 2015 B2
9162590 Nagura et al. Oct 2015 B2
9174604 Wellhoefer et al. Nov 2015 B2
9242580 Schebaum et al. Jan 2016 B2
9318922 Hall et al. Apr 2016 B2
9340125 Stutika et al. May 2016 B2
9346428 Bortolin May 2016 B2
9422058 Fischer et al. Aug 2016 B2
9561770 Sievers et al. Feb 2017 B2
9608392 Destro Mar 2017 B1
9610862 Bonk et al. Apr 2017 B2
9663232 Porter et al. May 2017 B1
9673583 Hudson et al. Jun 2017 B2
9701217 Eckenroth et al. Jul 2017 B2
9731628 Rao et al. Aug 2017 B1
9758061 Pluta et al. Sep 2017 B2
9789834 Rapp et al. Oct 2017 B2
9796304 Salter et al. Oct 2017 B2
9815425 Rao et al. Nov 2017 B2
9821681 Rao et al. Nov 2017 B2
9840220 Van Buskirk et al. Dec 2017 B2
9919624 Cziomer et al. Mar 2018 B2
9950682 Gramenos et al. Apr 2018 B1
10059232 Frye et al. Aug 2018 B2
10160351 Sugimoto et al. Dec 2018 B2
10479227 Nolte et al. Nov 2019 B2
10493243 Braham Dec 2019 B1
10547135 Sugiura Jan 2020 B2
10549659 Sullivan et al. Feb 2020 B2
10654378 Pons May 2020 B2
10737644 Taylor Aug 2020 B2
20050046367 Wevers et al. Mar 2005 A1
20050089367 Sempliner Apr 2005 A1
20050150705 Vincent Jul 2005 A1
20050211835 Henley et al. Sep 2005 A1
20050215098 Muramatsu et al. Sep 2005 A1
20050230543 Laib et al. Oct 2005 A1
20050258676 Mitchell Nov 2005 A1
20050283333 Johannes Dec 2005 A1
20060131470 Yamada et al. Jun 2006 A1
20060208549 Hancock et al. Sep 2006 A1
20060220411 Pathak et al. Oct 2006 A1
20080021602 Kingham et al. Jan 2008 A1
20080084085 Mizuno et al. Apr 2008 A1
20080090432 Patterson et al. Apr 2008 A1
20090014584 Rudduck et al. Jan 2009 A1
20090129105 Kusu et al. May 2009 A1
20090251920 Kino et al. Oct 2009 A1
20090302665 Dowty Dec 2009 A1
20090319212 Cech et al. Dec 2009 A1
20100117275 Nakamura May 2010 A1
20110024595 Oi et al. Feb 2011 A1
20120112032 Kohen May 2012 A1
20130020459 Moriyama et al. Jan 2013 A1
20130035994 Pattan et al. Feb 2013 A1
20140263920 Anticuar et al. Sep 2014 A1
20140265479 Bennett Sep 2014 A1
20150048206 Deloubes Feb 2015 A1
20150069807 Kienke Mar 2015 A1
20150083882 Stutika et al. Mar 2015 A1
20150191106 Inoue et al. Jul 2015 A1
20150236462 Davidson, Jr. et al. Aug 2015 A1
20160039314 Anticuar et al. Feb 2016 A1
20160154170 Thompson et al. Jun 2016 A1
20160226236 Djelassi Aug 2016 A1
20160236613 Trier Aug 2016 A1
20170080825 Bonk et al. Mar 2017 A1
20170080826 Bonk et al. Mar 2017 A1
20170166093 Cziomer et al. Jun 2017 A1
20170253246 Graf Sep 2017 A1
20170261343 Lanter et al. Sep 2017 A1
20170291507 Hattori et al. Oct 2017 A1
20180017189 Wegner Jan 2018 A1
20180039917 Buttolo et al. Feb 2018 A1
20180086232 Kume Mar 2018 A1
20180105072 Pons Apr 2018 A1
20180148011 Zaugg et al. May 2018 A1
20180183623 Schoenfeld et al. Jun 2018 A1
20180275648 Ramalingam Sep 2018 A1
20180334054 Higuchi Nov 2018 A1
20190001846 Jackson et al. Jan 2019 A1
20190084453 Petit et al. Mar 2019 A1
20190089093 Liu Mar 2019 A1
20190126786 Dry et al. May 2019 A1
20190337413 Romer Nov 2019 A1
20190337414 Condamin et al. Nov 2019 A1
20190337415 Condamin et al. Nov 2019 A1
20190337416 Condamin et al. Nov 2019 A1
20190337417 Condamin et al. Nov 2019 A1
20190337418 Condamin et al. Nov 2019 A1
20190337419 Condamin et al. Nov 2019 A1
20190337420 Condamin et al. Nov 2019 A1
20190337421 Condamin et al. Nov 2019 A1
20190337422 Condamin et al. Nov 2019 A1
20190337471 Brehm Nov 2019 A1
20190379187 Christensen et al. Dec 2019 A1
20190389336 Malinowski et al. Dec 2019 A1
20200009995 Sonar Jan 2020 A1
20200055423 Prozzi et al. Feb 2020 A1
20200079244 Carbone et al. Mar 2020 A1
20200180516 Moulin Jun 2020 A1
20200180517 Moulin Jun 2020 A1
20200189504 Ricart et al. Jun 2020 A1
20200189511 Ricart et al. Jun 2020 A1
20200194936 Ricart et al. Jun 2020 A1
20200194948 Lammers et al. Jun 2020 A1
20200207241 Moulin et al. Jul 2020 A1
20200269754 Ricart et al. Aug 2020 A1
20200282871 Ricart et al. Sep 2020 A1
20200282880 Jones et al. Sep 2020 A1
Foreign Referenced Citations (43)
Number Date Country
101067642 Nov 2007 CN
203190203 Sep 2013 CN
203799201 Aug 2014 CN
104554746 Apr 2015 CN
105843087 Aug 2016 CN
3710476 Oct 1987 DE
29712180 Sep 1997 DE
10164068 Apr 2003 DE
10258837 Apr 2004 DE
202005013714 Dec 2005 DE
102005007430 Mar 2006 DE
102006022032 Dec 2006 DE
102010017038 Feb 2011 DE
102010063615 Feb 2012 DE
102011056278 Feb 2013 DE
202014102336 Jun 2014 DE
102014217754 Mar 2015 DE
102015212100 Dec 2015 DE
112015000380 Oct 2016 DE
102016113409 Apr 2017 DE
0565973 Oct 1993 EP
0783990 Jul 1997 EP
1176047 Jan 2002 EP
1209024 May 2002 EP
1431104 Jun 2004 EP
2298609 Mar 2011 EP
1699661 Aug 2012 EP
3150426 Apr 2017 EP
2762814 Nov 1998 FR
2864481 Apr 2006 FR
2951329 Apr 2011 FR
2986751 Aug 2013 FR
3314591 Aug 2002 JP
2003227703 Aug 2003 JP
2005119518 May 2005 JP
2007112174 May 2007 JP
2008158578 Jul 2008 JP
4222262 Feb 2009 JP
2013230721 Nov 2013 JP
0187665 Nov 2001 WO
2003002256 Jan 2003 WO
2004098943 Nov 2004 WO
2005068247 Jul 2005 WO
Non-Patent Literature Citations (5)
Entry
Co-pending U.S. Appl. No. 16/597,187, filed Oct. 9, 2019.
Co-pending U.S. Appl. No. 16/672,989, filed Nov. 4, 2019.
Co-pending U.S. Appl. No. 16/711,661, filed Dec. 12, 2019.
Chinese Office Action dated Feb. 7, 2022 corresponding to Chinese Patent Application No. 202010106807.9.
Chinese Office Action dated Sep. 2, 2022 for Chinese Patent App. 202010106807.9.
Related Publications (1)
Number Date Country
20200262367 A1 Aug 2020 US
Provisional Applications (1)
Number Date Country
62807827 Feb 2019 US