1. Field of the Invention
The present invention relates to an electrical auxiliary heater with the pre-characterising features of Claim 1.
2. Description of the Related Art
An auxiliary heater of this nature is for example known from EP 0 350 528 or from EP 1 564 503. Generally, the printed conductors for powering the PTC heating elements are formed by sheet metal bands of which selected sheet metal bands are brought out of the side of the housing, which is normally formed as a flat frame with, essentially, the thickness of the layer structure. These sheet metal bands, brought out at the side and over the circumferential edge of the frame, here form contact lugs for the connection of the electrical auxiliary heater to the power supply. The connection can also occur with the intervening positioning of an open or closed-loop control element plugged onto the contact lugs.
With electrical auxiliary heaters of this type, in particular in a motor vehicle for the heating of the passenger compartment, relatively high currents are used because heating powers of between 2,000 and 3,000 watts must be output by the electrical auxiliary heater and the vehicle electrical system is normally operated at 12 volts. Therefore, the surface of the contact lug used for contacting the connector element must ensure a good transfer of electrical current. For economical reasons however the printed conductors should be cut off from an endless band and inserted in the housing preferably without further processing and irrespective of whether the corresponding printed conductors form contact lugs on the outside or terminate inside the housing.
The object of the present invention is to provide an electrical auxiliary heater, which fulfils on one hand the above mentioned, partially conflicting requirements of economical manufacture and on the other hand a good and reliable plug connection to the electrical auxiliary heater.
This object is solved according to the present invention by an electrical auxiliary heater having the features of Claim 1. The electrical auxiliary heater according to the invention differs from the prior state of the art in that the contact lugs are formed by stamped sheet metal pieces which are electrically connected to selected printed conductors. In other words the sheet metal band, which previously in the state of the art was brought out directly via the housing at the side to form contact lugs, preferably terminates within the housing, whereas the contact lugs protruding beyond the housing are formed from a separate component, namely a stamped sheet metal piece which is electrically connected to the printed conductors, generally within the housing. Here, different material thicknesses can be selected for the printed conductors on one hand and the stamped sheet metal piece on the other in order to facilitate the simplest possible plug connection of a mating plug to the contact lugs without having to use relatively thick sheet metal bands or similar parts for the printed conductors for powering the PTC heating elements.
The stamped sheet metal piece and the selected printed conductor can in principle be joined together according to various techniques. Thus, it is possible to join both components by welding or soldering. An adhesive joint is also conceivable.
Preferably, the sheet metal piece and the printed conductor, which is especially preferably formed in the shape of a sheet metal band, are positioned parallel to one another and have an overlapping longitudinal part, where the stamped sheet metal piece lies parallel to the assigned printed conductor and contacts it. The overlapping longitudinal part should here be selected such that a reliable contact to the adjacent components is achieved. According to another preferred embodiment of the present invention, the sheet metal piece has at least one, preferably many protrusions, which are particularly preferably formed by means of stamping the sheet metal piece. Alternatively, appropriate protrusions can also be provided on the sheet metal band forming the printed conductor. Just as well, appropriate protrusions can be provided both on the sheet metal band and also on the sheet metal piece. The protrusions are used for the specific electrical contacting of the two components in the overlapping longitudinal region. The electrical contacting between the sheet metal band and contact lug should take place solely via these protrusions. In this way it is ensured that the current transfer from the contact lug into the printed conductor occurs in a defined manner.
With regard to the most economical manufacture, according to a preferred further development of the present invention, it is suggested that the printed conductor is connected to the contact lug via a spring element. The spring element establishes a positive connection of the two components, preferably, where they have overlapping longitudinal parts, by contact pressure between the two components. Here, according to a further preferred embodiment of the present invention, the spring element can also be used to hold the sheet metal piece on the housing. This holding action can be directly realised by the interaction of the spring element and the housing or housing parts. The spring element can for example clamp the sheet metal piece—with an intervening position of the corresponding walls of the housing—thus fixing it with respect to the housing. Alternatively, the spring element can also be provided in a housing formed specifically for the accommodation of the spring element. This housing is designated in the following as the spring receptacle and is formed in such a way that it holds the spring element with only slight play. The spring receptacle accordingly forms limit stops, against which the spring abuts during a possible relative movement of the contact lug inserted into the housing in order to limit this relative movement.
To simplify the assembly of the electrical auxiliary heater the housing comprises a housing lower part, which is essentially dish-shaped and, at least partially, holds the layer structure circumferentially, so that the layer structure can be positioned in the specified manner by placement in the housing lower part. Furthermore, the housing lower part is formed such that with interaction with the contours of the spring element in the installation position of the spring element it essentially prevents movement in the longitudinal direction of the layers of the layer structure. Through the interaction of the housing lower part and spring element, the position of the spring element is accordingly essentially specified in the longitudinal direction of the printed conductor. In particular the previously mentioned spring receptacle is formed by the housing lower part.
According to a further preferred embodiment of the invention the spring element is formed in the shape of a spring clamp, the oppositely situated spring limbs of which clamp the printed conductor and the sheet metal piece between them in the installation position of the spring element. Preferably, for each contact lug a corresponding spring clamp is provided, the spring force of which solely produces the contacting of the printed conductor and sheet metal piece.
To fix the spring clamp clamping the printed conductor and the sheet metal piece, according to a further preferred embodiment of the present invention it is suggested that on both sides of the sheet metal piece and/or of the printed conductor, protrusions are formed and that at least one of the spring limbs contacts the sheet metal piece or the printed conductor between two protrusions. The protrusions, which can preferably be provided in oppositely situated parallel rows, form accordingly elevations between which a contact base of the spring limb on the sheet metal piece or the printed conductor is formed, preventing the spring clamp from slipping in a direction essentially at right angles to the longitudinal extension of the printed conductor. Here, it is assumed that the spring clamp preferably forms oppositely situated convex protrusions which contact the sheet metal piece or the printed conductor and pass the protrusions provided on the sheet metal piece and/or printed conductor at a certain distance. In other words the spring limbs with their convex protrusions should reliably contact between the oppositely situated protrusions on the sheet metal piece or printed conductor which are preferably formed by means of stamping.
According to a further preferred embodiment of the present invention, which facilitates a simple preassembly of all single parts of the electrical auxiliary heater, the housing lower part forms the spring receptacle and in fact in such a manner that it opens in the insertion direction of the elements of the layer structure. Within the spring receptacle there is also with this preferred embodiment the overlapping longitudinal part. Preferably, this overlapping longitudinal part is essentially restricted to the extension of the spring receptacle.
To position the selected printed conductor or the sheet metal piece before completing the assembly of all components of the electrical auxiliary heater, in particular before fitting the spring clamp, it is preferable to provide the spring receptacles with slots opening in the longitudinal direction of the layers of the layer structure, which are formed suitably for the accommodation of the sheet metal piece and/or printed conductor. The slots are here preferably dimensioned such that the printed conductor, but in particular the sheet metal piece, is aligned parallel to the planes of the layer structure. Accordingly, a spring clamp pushed in the insertion direction over the printed conductor and sheet metal piece can securely grip both parts and hold them together under tension. For this purpose the spring clamp has at its front region preferably a slightly funnel-shaped insertion opening formed by the two spring limbs.
According to a further preferred embodiment of the present invention, the maximum penetration depth of the sheet metal piece into the housing is restricted by the formation of at least one of the slots. Preferably the slot provided between the spring receptacle and the layer structure here forms a limit stop for the sheet metal piece, which prevents deeper penetration of the sheet metal piece in the direction onto the layer structure, so that even with impact stressing of the contact lugs they are not pushed into the housing where they could cause a short circuit.
According to a further preferred embodiment of the present invention the sheet metal piece forms a plug-on section at its end which protrudes beyond the housing. This is characterised in that it has functional surfaces which are specially adapted to contact surfaces of a plug element which is to be plugged onto the contact lugs. The corresponding functional surface differs in particular from the formation and especially from the dimensioning of the sheet metal piece in the region of the overlapping longitudinal part.
According to a further preferred embodiment of the present invention the sheet metal piece is held on the housing by means of positive locking in the longitudinal direction of the layers of the layer structure. In this respect on one side surface of the sheet metal piece preferably a groove which opens out is provided and in fact between the plug-on section and the overlapping longitudinal part of the sheet metal piece, and a protrusion, which holds the sheet metal piece with slight or even no play and is formed by the housing, engages this groove.
According to a further preferred embodiment the overlapping longitudinal part of the printed conductor preferably terminates before the groove, i.e. the printed conductor does not protrude outwards beyond the groove. Provided that according to a further preferred embodiment the protrusion engaging the groove is part of an edge which encompasses the housing in the circumferential direction, i.e. the protrusion is essentially provided on the outer surface of the housing, it is ensured that the printed conductor is accommodated completely within the housing and only the sheet metal piece protrudes beyond the housing.
Since the housing upper part is normally located on the housing lower part as a type of cover, according to a further preferred embodiment it is suggested also with regard to fixing the spring clamp in the spring receptacle that a ridge joining the two spring limbs of the spring clamp is arranged at approximately the same height with the free end of the spring receptacle formed by the housing lower part. In this way the spring clamp is prevented from being forced out of the spring receptacle. When being forced out, the spring clamp directly abuts the housing upper part, keeping the spring clamp in position.
For the easier assembly of the spring clamps and also with regard to an unambiguous assignment of the housing lower part and the housing upper part, according to a further preferred embodiment of the present invention it is suggested that the spring receptacles are formed to give a number of contact lugs so that they protrude beyond an edge of the housing lower part. This edge is an edge which is normally located parallel to the upper or underside of the housing which has air passing over it and which contacts the lid-shaped housing upper part when the cover is closed. In other words the said edge is delimited on the outside by the edge of the housing running in the circumferential direction around the housing. The edge of the housing running in the circumferential direction extends essentially at right angles to the edge over which the spring receptacles protrude. Therefore, with this embodiment the spring receptacles protrude in the direction of the housing upper part.
Finally, according to a further preferred embodiment of the present invention it is suggested that the upper side of the layer structure is terminated at about the same level as the free end of the spring receptacles, wherein the assembly is simplified and the material expense for producing the housing is kept within reasonable bounds.
Further details and advantages of the invention are given in the following description of an embodiment in conjunction with the drawing. This shows the following:
Five contact lugs 14, arranged one over the other in the transverse direction protrude over a face side of the housing 2. The contact lugs 14 pass through the housing 2 at the cut-out slots 15, each of which accommodate one contact lug 14 and are mainly formed by the housing lower part 4, but are complemented on a face side by the housing upper part 6.
The housing 2 has two oppositely situated frame openings, of which in
As can be seen, the illustrated embodiment has four heat generating elements 10, which are each insulating on the face side and are accommodated with a certain movement transverse to the layers of the layer structure (heating block 8) in the housing lower part 4. The housing lower part 4 has fitting element receptacles 22 for this, which open to a receptacle 24, which is essentially formed by the housing lower part 4 and accommodates the heating block 8. In the illustrated embodiment on each face side of the housing lower part 4 two different types of fitting element receptacles 22a, 22b are provided (cf. also
Whereas the heat generating elements 10 cannot be inserted at just any random place in housing 2, the heat dissipating corrugated rib elements 12 are produced non-specifically and initially as longitudinal sections of a meander-type bent sheet metal strip and are then cut to length from endless material. Each individual heat dissipating element 12 can be inserted at any position for a heat dissipating element within the heating block 8.
The fitting elements 26 are formed in one piece on a positional frame 28, which can be seen in
The face side ends of the positional frames 28 are extended by a fitting element ridge 38 beyond the position of the sheet metal bands 34, 36. At the outer ends of the fitting element ridges 38 there are the respective fitting elements 26 of the positional frame 28. As illustrated by the cross-sectional view along the line VII-VII drawn in
The one-part component manufactured in this way by means of injection moulding is then fitted with the main parts of the heat generating element 10, i.e. the PTC heating elements 30 are inserted into the corresponding receptacle 32 and surrounded on both sides by the sheet metal bands 34, 36. Thereafter the recesses are plastically deformed inwards, comprehensively forming the printed conductors 34, 36.
The heat generating element 10 is formed as a preassembled component and can thus be handled during assembly without the risk that the printed conductors 34, 36 or even the PTC heating elements 30 inserted in the positional frame 28 will be lost. It must however be pointed out that normally the retaining ridges only fix the sheet metal bands 34, 36 in the positional frame, but do not contact them with contact pressure against the PTC heating elements 30, which is sufficient to reliably power the PTC heating elements 30 in operation. With the embodiment discussed within the scope of the present invention, this is in any case caused by a spring element which is inserted into the housing 2 and puts the complete layer structure consisting of the heat generating elements 10 and the heat dissipating elements 12 under tension.
As can be seen, in particular from
The upper heat dissipating elements in
The slots 15 previously mentioned with reference to
As can be seen particularly in
On the front plug-on section 140 the sheet metal piece 120 terminates conically to facilitate the plugging on of a female plug element, which is not illustrated, onto the contact lug 14. As
The spring element illustrated in detail in
The previously described assembly occurs once the layer structure consisting of the heat generating elements 10 and heat dissipating elements 12 has been inserted into the housing lower part 4 (cf.
As can be seen from
With the previously illustrated embodiment the electrical contacting between the sheet metal piece 120 and the sheet metal band 34 occurs solely through the clamping force of the spring clamp 46. This is formed by spring steel and causes a compressive pressure of between 1000 and 1500 N/mm2 between the sheet metal piece 120 and the sheet metal band 34. With a relaxed spring clamp 46 the smallest distance of the convex contact bases 132 is at maximum 40% of the accumulated thickness of the sheet metal piece 120 and the sheet metal band 34.
The sheet metal piece 120 is formed from a material which is a good electrical conductor, for example a copper/tin alloy. At least the plug-on section 140, preferably the complete sheet metal piece 120, are each provided with a silver coating on the oppositely situated side surfaces in order to achieve the best possible contact on one hand between the sheet metal piece 120 and the sheet metal band 34 and on the other hand between the contact lug 14 and the plug element which is to be plugged on it.
Number | Date | Country | Kind |
---|---|---|---|
07014115.5 | Jul 2007 | EP | regional |
08000980.6 | Jan 2008 | EP | regional |