Electrical cable fittings may be used to connect a flexible cable to an enclosure and to provide strain relief. In some instances, the electrical fitting may include a chuck that is compressed against the cable to form a mechanical grip around the cable.
The following detailed description refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
In systems and methods described herein, a cable fitting with a dual wedge can provide increased cable retention force and reduced fitting length over single wedge fittings.
As shown in
Gland nut 110 and body 140 may be formed from, for example, aluminum, steel, or non-metallic materials to provide a rigid structure for securing cable 150. Chuck 120 may include a softer material, such as nylon, that may allow chuck 120 to collapse inwardly and compress against cable 150. Bushing 130 may include a sealing material, such as a thermoplastic rubber, that may allow bushing 130 to be inwardly compressed and guided by chuck 120.
Interior threads 112 may be configured to engage corresponding external threads 142 of body 140. Sloped contact surface 114 may extend annularly to form a portion of bore 118 of gland nut 110. Sloped contact surface 114 may generally have an angle from a central axis that provides a gradually decreasing inside diameter of a portion of bore 118 in a direction extending axially from a proximal end to a distal end of cable restrain device 100. For example, as shown in
Additional views of chuck 120 are included in
As shown in
Distal end tapered surface 124 and proximal end tapered surface 126 may generally have opposing angles that force segments 121 inwardly (e.g., toward a central axis of cable restrain device 100) as compressive axial pressure is applied to chuck 120. The angle of distal end tapered surface 124 may generally match an angle of corresponding sloped contact surface 114 of gland nut 110. The angle of proximal end tapered surface 126 may generally match an angle of corresponding sloped contact surface of body 140 described below.
Shoulder 125 of each segment 121 may form a seat for bushing 130. As described further below, bushing 130 may rest within a portion of chuck 120 in a circumference defined by shoulders 125. Shoulders 125 may position a central bore of bushing 130 in the axial pathway for cable 150.
Each distal end tapered surface 124 and each proximal end tapered surface 126 may slide each segment 121 toward a central axis of cable restrain device 100 as gland nut 110 is advanced on body 140. In one implementation, joints 127 may collapse inwardly (e.g., toward a central axis of cable restrain device 100) to permit inward movement of segments 121. In one implementation, joints 127 may include relatively thinner sections (e.g., compared to segments 121) with angled strips molded to fold inwardly. In another implementation, joints 127 may include scores lines or indentations essentially parallel to the axis of cable restrain device 100. Joints 127 may bend along the scored lines to allow segments 121 to collapse inwardly toward a central axis. Interior teeth 123 of each segment 121 may engage cable 150 to secure cable 150 within cable restrain device 100. Also, as joints 127 collapse inwardly, shoulder 125 of each segment 121 may force bushing 130 inward to seal around cable 150.
Referring to
Body 140 may include external threads 142, sloped contact surface 144, a hexagonal band 146, installation threads 147, and a bore 148. External threads 142 may be configured to engage corresponding interior threads 112 of gland nut 110. Sloped contact surface 144 may extend annularly within body 140. Sloped contact surface 144 may generally have an angle from a central axis that provides a gradually increasing inside diameter of a portion of bore 148 in a direction extending axially from a proximal end to a distal end of cable restrain device 100. For example, as shown in
The angle of sloped contact surface 144 may essentially match the angle of corresponding proximal end tapered surface 126 (of chuck 120) and tapered surface 134 (of bushing 130). Similar to sloped contact surface 114 of gland nut 110, sloped contact surface 144 of body 140 may guide chuck 120 inwardly as gland nut 110 is advanced axially onto body 140. Thus, chuck 120 may receive inwardly compressive forces on opposite ends from body 140 and gland nut 110, respectively.
Hexagonal band 146 may be provided on an outer surface of body 140 and may be configured to receive, for example, a wrench. Installation threads 147 of body 140 may be inserted through, for example, a wall of an enclosure or another support structure to which body 140 may be secured. In one implementation, a nut (not shown) may be applied over installation threads 147 with the wall in between to secure body 140 to the support structure. Bore 148 may generally be of a fixed diameter configured to receive cable 150 therethrough.
The taper angles of particular contact surfaces in cable restrain device 100 (e.g., sloped contact surface 114, distal end tapered surface 124, proximal end tapered surface 126, tapered surface 134, and sloped contact surface 144) may generally be shallower than conventional fittings that use a chuck and bushing compression system. The shallower taper angles may contribute to a reduction in the overall axial length of the cable restrain device 100. For example, as shown in
In other implementations, different angles/ratios than those shown in
In contrast with the implementations described herein, conventional fittings that use a single wedge chuck may have relatively long gland nuts at the distal end that expensive to manufacture and require a larger amount of metal to form. Also, the length of these conventional fittings can make them difficult to mount in tight spaces. However, simply decreasing the length of the fitting would result in a larger taper angle on its internal parts which can compromise the self-guiding property of the bushing-chuck stack. For example, if the taper angle exceeds 25 degrees and a length/thickness ratio is less than 1, the alignment behavior of the bushing-chuck stack is generally unpredictable.
Thus, according to an implementation described herein, a cable fitting may include a gland nut, a body, and a chuck. The gland nut may include first threads, an axial gland bore, and a first sloped surface along a portion of the axial gland bore. The body may include second threads configured to receive the first threads, an axial body bore, and a second sloped surface along a portion of the axial body bore. The chuck may include multiple segments joined in a hinged fashion to create a ring. Each of the multiple segments may include a distal end tapered surface and a proximal end tapered surface. The gland nut, the body, and the chuck may be configured to form an axial pathway for receiving a cable. When the first threads of the gland nut are advanced onto the second threads of the body, the first sloped surface is configured to apply a first compressive force to the distal end tapered surfaces, and the second sloped surface is configured to apply a second compressive force to the proximal end tapered surfaces. The compressive forces cause inward deformation of the chuck to secure the cable within the axial pathway.
In another implementation, the cable fitting may further include a bushing with a central bore. Each of the multiple segments of the chuck may include a seating area to support the bushing within a circumference of the chuck and a shoulder to position the central bore in the axial pathway. When the first threads of the gland nut are advanced onto the second threads of the body, the shoulders may compress the bushing to seal around the cable.
The foregoing description of exemplary implementations provides illustration and description, but is not intended to be exhaustive or to limit the embodiments described herein to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the embodiments.
Although the invention has been described in detail above, it is expressly understood that it will be apparent to persons skilled in the relevant art that the invention may be modified without departing from the spirit of the invention. Various changes of form, design, or arrangement may be made to the invention without departing from the spirit and scope of the invention. Therefore, the above-mentioned description is to be considered exemplary, rather than limiting, and the true scope of the invention is that defined in the following claims.
No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
This application claims priority under 35 U.S.C. §119, based on U.S. Provisional Patent Application No. 61/755,669 filed Jan. 23, 2013, the disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3667783 | Sotolongo | Jun 1972 | A |
3744008 | Castellani | Jul 1973 | A |
3989340 | Sheldon et al. | Nov 1976 | A |
4030741 | Fidrych | Jun 1977 | A |
4070085 | Nelson | Jan 1978 | A |
4114974 | Lawrence | Sep 1978 | A |
4208085 | Lawrence et al. | Jun 1980 | A |
4250348 | Kitagawa | Feb 1981 | A |
4323727 | Berg | Apr 1982 | A |
4387267 | Becker | Jun 1983 | A |
4686738 | Bladh | Aug 1987 | A |
4891470 | Studenski | Jan 1990 | A |
5059747 | Bawa et al. | Oct 1991 | A |
5211576 | Tonkiss et al. | May 1993 | A |
5246376 | Schuhl et al. | Sep 1993 | A |
5374017 | Martin et al. | Dec 1994 | A |
5621191 | Norris et al. | Apr 1997 | A |
5743759 | Pudims et al. | Apr 1998 | A |
6149455 | Levi | Nov 2000 | A |
7749021 | Brodeur | Jul 2010 | B2 |
8288667 | Chiou | Oct 2012 | B2 |
20090025977 | Anderson et al. | Jan 2009 | A1 |
20120142207 | Duval et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
933975 | Sep 1973 | CA |
1036323 | Aug 1978 | CA |
1039377 | Sep 1978 | CA |
1040280 | Oct 1978 | CA |
1040281 | Oct 1978 | CA |
1115817 | Jan 1982 | CA |
1201877 | Mar 1986 | CA |
2266253 | Sep 1999 | CA |
2216279 | Apr 2005 | CA |
2446276 | Mar 2007 | CA |
2285397 | Nov 2007 | CA |
2665700 | Nov 2012 | CA |
20211347 | Oct 2002 | DE |
20 2007 011 452 | Jan 2008 | DE |
0 156 956 | Oct 1985 | EP |
1172596 | Jun 2001 | EP |
8602209 | Apr 1986 | WO |
Number | Date | Country | |
---|---|---|---|
20140202760 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61755669 | Jan 2013 | US |