The invention generally relates to an electrical cable, such as (as an example) a multi-conductor electrical cable of the type used in an oilfield wireline logging operation for purposes of analyzing geologic formations adjacent a wellbore.
Generally, geologic formations within the earth that contain oil and/or petroleum gas have properties that may be linked with the ability of the formations to contain such products. For example, formations that contain oil or petroleum gas have higher electrical resistivities than those that contain water. Formations that primarily include sandstone or limestone may contain oil or petroleum gas. Formations that primarily include shale, which may also encapsulate oil-bearing formations, may have porosities much greater than that of sandstone or limestone, but, because the grain size of shale is very small, it may be very difficult to remove the oil or gas trapped therein. Accordingly, logging operations are often conducted in the well before its completion for purposes of measuring various characteristics of the geologic formations adjacent to the well to help in determining the location of an oil- and/or petroleum gas-bearing formation, as well as the amount of oil and/or petroleum gas trapped within the formation and the ease of removing the oil and/or petroleum gas from the formation.
Therefore, after a well is drilled, it is common to log certain sections of the well with electrical instruments called logging tools. A wireline instrument is one type of logging tool. The wireline instrument is lowered downhole on a cable called a “wireline cable” for purposes of measuring the properties of geologic formations as the instrument traverses the well. The wireline cable electrically connects the wireline instrument with equipment at the earth's surface, as well as provides structural support to the instrument as it is lowered and raised in the well during the logging operation.
The wireline cable typically contains an infrastructure to communicate power to the wireline instrument and communicate telemetry data from the instrument to a surface logging unit. Because downhole temperatures and pressures may reach, for example, 500° Fahrenheit (F) and sometimes up to 25,000 pounds per square inch (psi), the wireline cable typically is designed to withstand extreme environmental conditions. Because wells are being drilled to deeper depths, the electricity and telemetry requirements of the wireline cable are ever increasing. Thus, in view of these more stringent requirements, the wireline cable designer is presented with challenges related to maintaining or increasing the signal-to-noise ratio (SNR) of the telemetry signals, minimizing telemetry signal attenuation, as well as accommodating the delivery of high power downhole.
In an embodiment of the invention, an electrical cable includes insulated primary conductors and at least one insulated secondary conductor, which extend along the cable. The primary conductors define interstitial spaces between adjacent primary conductors, and the primary conductors have approximately the same diameter. The primary conductors include power conductors and at least one telemetric conductor. The secondary conductor(s) preferably each have a diameter that is smaller than each of the diameters of the primary conductors, and each secondary conductor is at least partially nested in one of the interstitial spaces. The electrical cable also includes at least one armor wire layer, which surrounds the primary and secondary conductors.
In another embodiment of the invention, an electrical cable includes insulated primary conductors; at least one insulated secondary conductor; layers of inner and outer armor wires; a polymeric material; and an outer jacket. The insulated primary conductors extend along the cable, and a telemetric primary conductor extends along the cable and defines interstices between adjacent primary conductors. The insulated primary conductors and the telemetric conductor have approximately the same diameter. Each secondary conductor has a diameter that is smaller than the diameter of each of the primary conductors and extends along the longitudinal axis of the cable. Each secondary conductor is at least partially nested in one of the interstices. The layer of inner armor wires surrounds the insulated primary conductors, the telemetric primary conductor and the secondary conductor(s). The layer of outer armor wires surrounds the layer of inner armor wires. The polymeric material is disposed in the interstitial spaces that are formed between the inner armor wires and the outer armor wires and interstitial spaces that are formed between the inner armor wire layer and the insulated conductor. The polymeric material forms a continuously bonded layer, which separates and encapsulates armor wires forming the inner armor wire layer and the outer wire layer. The outer jacket is disposed around and bonded to the polymeric material.
In yet another embodiment of the invention, a method includes providing a cable in a well; and including insulating primary conductors in the cable, which define interstitial spaces between adjacent primary conductors and have approximately the same diameter. The primary conductors include power conductors and a telemetric conductor. The method includes disposing at least one insulated secondary conductor having a diameter smaller than the primary conductor at least partially in one of the interstitial spaces defined by the primary conductors; and encasing the cable with an armor shield.
Advantages and other features of the invention will become apparent from the detailed description, drawing and claims.
As depicted in
Referring to
The wireline cable 24 also includes secondary conductors 70 (three conductors 70, for example), which are smaller in size (i.e., have relatively smaller diameters) than the primary conductors 60 and 80 and which may be used, for example, for purposes of communicating three phase power to the logging tool 28 (see
As depicted in
The primary telemetric conductor 80, primary power conductors 60 and secondary power conductors 70 each preferably includes metallic conductors that are encased in an insulated jacket. Any suitable metallic conductors may be used. Examples of metallic conductors include, but are not necessarily limited to, copper, nickel coated copper, or aluminum. While any suitable number of metallic conductors may be used in forming one of these insulated conductors, preferably from 1 to about 60 metallic conductors are used in a particular insulated conductor, and more preferably 7, 19, or 37 metallic conductors may be used.
The insulated jackets may include any of a wide variety of suitable materials. Examples of suitable insulated jacket materials include, but are not necessarily limited to, polytetrafluoroethylene-perfluoromethylvinylether polymer (MFA), perfluoro-alkoxyalkane polymer (PFA), polytetrafluoroethylene polymer (PTFE), ethylene-tetrafluoroethylene polymer (ETFE), ethylene-propylene copolymer (EPC), poly(4-methyl-1-pentene) (TPX® available from Mitsui Chemicals, Inc.), other polyolefins, other fluoropolymers, polyaryletherether ketone polymer (PEEK), polyphenylene sulfide polymer (PPS), modified polyphenylene sulfide polymer, polyether ketone polymer (PEK), maleic anhydride modified polymers, Parmax® SRP polymers (self-reinforcing polymers manufactured by Mississippi Polymer Technologies, Inc based on a substituted poly (1,4-phenylene) structure where each phenylene ring has a substituent R group derived from a wide variety of organic groups), or the like, and any mixtures thereof.
As depicted in
Referring to
As also depicted in
The metallic shield 86 may be any suitable metal or material, which serves to substantially decouple the telemetry that is provided by the inner conductors 82 of the conductor 80 from power transmission. Alternatively, the outer metallic shield 86 is surrounded by a tape or polymeric layer 87 that is disposed on top of the layer 86, in accordance with some embodiments of the invention.
The inner metallic conductors of the primary 60, 80 and secondary 70 conductors may be of any suitable size, also known as American Wire Gauge (AWG). In some embodiments, the metallic conductors range in gauge from 8 AWG to 32 AWG, including all gauges sizes therebetween (i.e. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31 AWG). In some embodiments of the invention, metallic conductors that are used in the telemetric primary conductor 80 may be in a range from 28 AWG to 18 AWG in size. In some embodiments of the invention, the metallic conductors in the primary power conductors 60 are in a range from 14 AWG to 10 AWG. In some embodiments of the invention, the secondary conductor 70 includes metallic conductors of wire gauge ranging from 16 AWG to 24 AWG.
Referring back to
The primary 60, 80 and secondary 70 conductors define various interstitial spaces (in addition to the interstitial spaces 40 which at least partially receive the secondary conductors 70), and the cable 24 includes an insulative material 100, such as a polymeric material, that is disposed in these spaces. Furthermore, although not depicted in
As examples, suitable polymeric materials include EPDM, polyolefins (such as EPC or polypropylene), other polyolefins, polyaryletherether ketone (PEEK), polyaryl ether ketone (PEK), polyphenylene sulfide (PPS), modified polyphenylene sulfide, polymers of ethylene-tetrafluoroethylene (ETFE), polymers of poly(1,4-phenylene), polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA) polymers, fluorinated ethylene propylene (FEP) polymers, polytetrafluoroethylene-perfluoromethylvinylether (MFA) polymers, Parmax®, and any mixtures thereof. Other polymeric materials that may be used include ethylene-tetrafluoroethylene polymers, perfluoroalkoxy polymers, fluorinated ethylene propylene polymers, polytetrafluoroethylene-perfluoromethylvinylether polymers, and any mixtures thereof.
The wireline cable 24 may also include a bedding layer 94, such as a layer formed from a binder tape and a polymeric material, which surrounds the primary 60, 80 and secondary 70 conductors.
In accordance with some embodiments of the invention, the wireline cable 24 may have an overall diameter, which includes the armor shield 50, of less than about 2.5 centimeters, such as approximately 1.4 centimeters, as a more specific and non-limiting example. Furthermore, in accordance with some embodiments of the invention, the wireline cable 24 may have a minimum bending radius of about 10.1 centimeters. The wireline cable 24 may have other suitable overall diameters, bending stiffnesses and other physical characteristics, in accordance with other embodiments of the invention, as will be appreciated by those skilled in the art.
Among the particular advantages of the wireline cable 24, the cable 24 combines high mechanical stability, high power capability and shielded co-axial telemetry. Mechanical stability is provided by the basic design, as the three large components, i.e., the primary conductors 60 and 80, are less likely to shift under pressure and thus, less likely to allow smaller conductors, such as the secondary conductors 70 and other communication lines (further described below) of the cable 24 to become damaged. Because the larger primary power conductors 60 are used for the larger power requirements, the conductors 60 have lower impedances, which translates to lower cable losses and deeper reach, as compared to power conductors in conventional wireline cables. It is noted that lower power transmission may be handled by the relatively lower secondary power conductors 70. As noted above, all three conductors 70 may be configured to provide three phase power, in accordance with some embodiments of the invention.
The primary telemetric conductor 202 may also include filler rods 225 and drain wires 220, which may be alternated with the filler rods at the outside interstitial spaces formed between the conductors 210.
The shielded design is advantageous for applications requiring high signal-to-noise ratios and lower frequencies. Alternatively, the shield may be omitted if lower signal-to-noise ratios and higher frequencies are desired.
The wireline cable 300 may further be enhanced by adding optical components at various locations throughout the cable core. In this regard, in an embodiment of the invention, a wireline cable 350 (see
In some embodiments of the invention, the insulated power conductors, primary and/or secondary, are stacked dielectric insulated conductors, with electric field suppressing characteristics, such as those used in the cables described in U.S. Pat. No. 6,600,108 (Mydur, et al.), which is hereby incorporated by reference in its entirety. Such stacked dielectric insulated conductors generally include a first insulating jacket layer disposed around the metallic conductors wherein the first insulating jacket layer has a first relative permittivity, and, a second insulating jacket layer disposed around the first insulating jacket layer and having a second relative permittivity that is less than the first relative permittivity. The first relative permittivity is preferably within a range of about 2.5 to about 10.0, and the second relative permittivity is preferably within a range of about 1.8 to about 5.0.
As discussed above, cables, such as the cables 24, 150, 170, 200 and 250, according to embodiments of the invention include at least one layer of armor wires, such as the armor wire wrappings 50a or 50b, surrounding the primary 60, 80 and secondary 70 conductors. The armor wires may be generally made of any high tensile strength material including, but not necessarily limited to, galvanized improved plow steel, a layered mixture of metals such in bimetallic form, alloy steel, or the like. In some embodiments of the invention, the cable includes an inner armor wire layer surrounding the conductors and an outer armor wire layer served around the inner armor wire layer. A protective polymeric coating may be applied to each strand of armor wire for corrosion protection or even to promote bonding between the armor wire and polymeric material disposed in the interstitial spaces.
As used herein, the term “bonding” is meant to include chemical bonding, mechanical bonding, or any combination thereof. Examples of coating materials which may be used include, but are not necessarily limited to, fluoropolymers, fluorinated ethylene propylene (FEP) polymers, ethylene-tetrafluoroethylene polymers (Tefzel®), perfluoro-alkoxyalkane polymer (PFA), polytetrafluoroethylene polymer (PTFE), polytetrafluoroethylene-perfluoromethylvinylether polymer (MFA), polyaryletherether ketone polymer (PEEK), or polyether ketone polymer (PEK) with fluoropolymer combination, polyphenylene sulfide polymer (PPS), PPS and PTFE combination, latex or rubber coatings, and the like.
Each armor wire, such as the armor wire wrappings 50a or 50b, may also be plated with materials for corrosion protection or even to promote bonding between the armor wire and polymeric material. Nonlimiting examples of suitable plating materials include brass, copper alloys, and the like. Plated armor wires may even comprise cords such as tire cords. While any effective thickness of plating or coating material may be used, a thickness from about 10 microns to about 100 microns may be used, as an example.
In some cables, such as the cables 24, 150, 170, 200 and 250, polymeric material 101, best seen in
In cables, such as the cables 24, 150, 170, 200 and 250, according to embodiments of the invention, the armor wires are preferably partially or completely sealed by a polymeric material, such as the polymeric material 100, 101, or the like, that completely fills all interstitial spaces, therefore eliminating any conduits for gas migration. Further, incorporating a polymeric material in the interstitial spaces provides torque balanced two armor wire layer cables, since the outer armor wires are locked in place and protected by a tough polymer jacket, and larger diameters are not required in the outer layer, thus mitigating torque balance problems. Additionally, since the interstitial spaces are filled, corrosive downhole fluids cannot infiltrate and accumulate between the armor wires. The polymeric material may also serve as a filter for many corrosive fluids. By minimizing exposure of the armor wires and preventing accumulation of corrosive fluids, the useful life of the cable may be significantly increased.
When incorporated, filling the interstitial spaces between armor wires and separating the inner and outer armor wires with a polymeric material reduces point-to-point contact between the armor wires, thus improving strength, extending fatigue life, and while avoiding premature armor wire corrosion. Because the interstitial spaces are filled, the cable core is completely contained and creep is mitigated, and as a result, cable diameters are much more stable and cable stretch is significantly reduced. The creep-resistant polymeric materials used in embodiments of the invention may minimize core creep in two ways: first, locking the polymeric material and armor wire layers together greatly reduces cable deformation; and secondly, the polymeric material also may eliminate any annular space into which the cable core might otherwise creep.
Cables, such as the cables 24, 150, 170, 200 and 250, according to embodiments of the invention may improve problems encountered with caged armor designs, since the polymeric material encapsulating the armor wires may be continuously bonded it cannot be easily stripped away from the armor wires. Because the processes described herein allow standard armor wire coverage (93-98% metal) to be maintained, cable strength may not be sacrificed in applying the polymeric material, as compared with typical caged armor designs.
The polymeric material, such as the polymeric material 100, 101, or the like,used in some embodiments of the invention may be disposed continuously and contiguously from the insulated conductors to the layer of armor wires, or may even extend beyond the outer periphery thus forming a polymeric jacket that completely encases the armor wires. The polymeric material forming the jacket and armor wire coating material may be optionally selected so that the armor wires are not bonded to and can move within the polymeric jacket.
In some embodiments of the invention, the polymeric material, such as the polymeric material 100 or the like, may not have sufficient mechanical properties to withstand high pull or compressive forces as the cable is pulled, for example, over sheaves, and as such, may further include short fibers. While any suitable fibers may be used to provide properties sufficient to withstand such forces, examples include, but are not necessarily limited to, carbon fibers, fiberglass, ceramic fibers, Kevlar® fibers, Vectran® fibers, quartz, nanocarbon, or any other suitable material. Further, as the friction for polymeric materials including short fibers may be significantly higher than that of the polymeric material alone, an outer jacket of polymeric material without short fibers may be placed around the outer periphery of the cable so the outer surface of cable has low friction properties.
The polymeric material, such as the polymeric material 100 or the like, used to form the polymeric jacket or the outer jacket of cables according to embodiments of the invention may also include particles which improve cable wear resistance as it is deployed in wellbores. Examples of suitable particles include Ceramer™, boron nitride, PTFE, graphite, nanoparticles (such as nanoclays, nanosilicas, nanocarbons, nanocarbon fibers, or other suitable nano-materials), or any combination of the above.
Wireline cables, such as the cables 24, 150, 170, 200 and 250, according to embodiments of the invention may also have one or more of the armor wires replaced with coated armor wires. The coating may include the same material as those polymeric materials described hereinabove. This may help improve torque balance by reducing the strength, weight, or even size of the outer armor wire layer, while also improving the bonding of the polymeric material to the outer armor wire layer.
The materials forming the insulating layers and the polymeric materials used in the cables according to embodiments of the invention may further include a fluoropolymer additive, or fluoropolymer additives, in the material admixture to form the cable. Such additive(s) may be useful to produce long cable lengths of high quality at high manufacturing speeds. Suitable fluoropolymer additives include, but are not necessarily limited to, polytetrafluoroethylene, perfluoroalkoxy polymer, ethylene tetrafluoroethylene copolymer, fluorinated ethylene propylene, perfluorinated poly(ethylene-propylene), and any mixture thereof.
The fluoropolymers may also be copolymers of tetrafluoroethylene and ethylene and optionally a third comonomer, copolymers of tetrafluoroethylene and vinylidene fluoride and optionally a third comonomer, copolymers of chlorotrifluoroethylene and ethylene and optionally a third comonomer, copolymers of hexafluoropropylene and ethylene and optionally third comonomer, and copolymers of hexafluoropropylene and vinylidene fluoride and optionally a third comonomer.
The fluoropolymer additive should have a melting peak temperature below the extrusion processing temperature, and preferably in the range from about 200° C. to about 350° C. To prepare the admixture, the fluoropolymer additive is mixed with the insulating jacket or polymeric material. The fluoropolymer additive may be incorporated into the admixture in the amount of about 5% or less by weight based upon total weight of admixture, preferably about 1% by weight based or less based upon total weight of admixture, more preferably about 0.75% or less based upon total weight of admixture.
Components used in cables according to embodiments of the invention may be positioned at zero lay angle or any suitable lay angle relative to the center or longitudinal axis of the cable. Generally, the central component is positioned at zero lay angle, while strength members surrounding the central component(s) are helically positioned around the central component(s) at desired lay angles.
In accordance with some embodiments of the invention, the cable may include at least one filler rod component, such as the filler rods 158, 220, 225, and 312, or the like, in the armor wire layer. In such cables, one or more armor wires are replaced with a filler rod component, which may include bundles of synthetic long fibers or long fiber yarns. The synthetic long fibers or long fiber yarns may be coated with any suitable polymers, including those polymeric materials described hereinabove. The polymers may be extruded over such fibers or yarns to promote bonding with the polymeric jacket materials. This may further provide stripping resistance. Also, as the filler rod components replace outer armor wires, torque balance between the inner and outer armor wire layers may further be enhanced.
The cable, such as the cables 24, 150, 170, 200 and 250, in accordance with embodiments of the invention, may include armor wires employed as electrical current return wires, which provide paths to ground for downhole equipment or tools. The armor wires may be used for current return while minimizing electric shock hazard. In some embodiments of the invention, the polymeric material isolates at least one armor wire in the first layer of armor wires thus enabling their use as electric current return wires.
The cables, such as the cables 24, 150, 170, 200 and 250, that are disclosed herein may be used with wellbore devices to perform operations in wellbores penetrating geologic formations that may contain gas and oil reservoirs. The cables may be used to interconnect well logging tools, such as gamma-ray emitters/receivers, caliper devices, resistivity-measuring devices, seismic devices, neutron emitters/receivers, and the like, to one or more power supplies and data logging equipment outside the well, among any other suitable application.
The cables, such as the cables 24, 150, 170, 200 and 250, disclosed herein may also be used in non-wireline applications, such as in seismic operations, which include subsea and subterranean seismic operations. As another example, the cables disclosed herein may be used as permanent monitoring cables for wellbores and for well completions. Thus, many variations and applications of the cables disclosed herein are contemplated and are within the scope of the appended claims.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
This application claims the benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 60/825,507 entitled, “HIGH POWER TELEMETRY DECOUPLED WIRELINE CABLES,” which was filed on Sep. 13, 2006, and is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3115542 | Palandri et al. | Dec 1963 | A |
3639674 | Stier | Feb 1972 | A |
5495547 | Rafie et al. | Feb 1996 | A |
6297455 | Wijnberg et al. | Oct 2001 | B1 |
6600108 | Mydur et al. | Jul 2003 | B1 |
6924436 | Varkey et al. | Aug 2005 | B2 |
6960724 | Orlet et al. | Nov 2005 | B2 |
7005583 | Varkey et al. | Feb 2006 | B2 |
7009113 | Varkey | Mar 2006 | B2 |
7119283 | Varkey et al. | Oct 2006 | B1 |
7170007 | Varkey et al. | Jan 2007 | B2 |
7188406 | Varkey et al. | Mar 2007 | B2 |
7235743 | Varkey | Jun 2007 | B2 |
7259331 | Sridhar et al. | Aug 2007 | B2 |
7288721 | Varkey et al. | Oct 2007 | B2 |
20040118590 | Head | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20080236867 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60825507 | Sep 2006 | US |